精英家教网 > 初中数学 > 题目详情

【题目】如图,点O△ABC内一点,连结OBOC,并将ABOBOCAC的中点DEFG依次连结,得到四边形DEFG

1)求证:四边形DEFG是平行四边形;

2)若MEF的中点,OM=3∠OBC∠OCB互余,求DG的长度.

【答案】1)证明见解析;(26

【解析】试题分析:(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥BCEF=BCDG∥BCDG=BC,从而得到DE=EFDG∥EF,再利用一组对边平行且相等的四边形是平行四边形证明即可;

2)先判断出∠BOC=90°,再利用直角三角形斜边的中线等于斜边的一半,求出EF即可.

试题解析:(1∵DG分别是ABAC的中点,∴DG∥BCDG=BC∵EF分别是OBOC的中点,∴EF∥BCEF=BC∴DE=EFDG∥EF四边形DEFG是平行四边形;

2∵∠OBC∠OCB互余,∴∠OBC+∠OCB=90°∴∠BOC=90°∵MEF的中点,OM=3∴EF=2OM=6

由(1)有四边形DEFG是平行四边形,∴DG=EF=6

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上

(1)给出以下条件;①OB=OD,②∠1=∠2,③OE=OF,请你从中选取两个条件证明△BEO≌△DFO;

(2)在(1)条件中你所选条件的前提下,添加AE=CF,求证:四边形ABCD是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算题。
(1)计算: .
(2)解不等式:4x+5≤2(x+1).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某学校在“国学经典”中新建了一座吴玉章雕塑,小林站在距离雕塑3米的A处自B点看雕塑头顶D的仰角为45°,看雕塑底部C的仰角为30°,求塑像CD的高度.(最后结果精确到0.1米,参考数据: ≈1.7)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠D=∠C=90°EDC的中点,AE平分∠DAB∠DEA=28°,则∠ABE的度数是( )

A. 62° B. 31° C. 28° D. 25°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCEBC上的一点,EC=2BE,点DAC的中点,设ABC,ADF,BEF的面积分别为=24,则=___________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将抛物线c1 沿x轴翻折,得到抛物线c2 , 如图1所示.

(1)请直接写出抛物线c2的表达式;
(2)现将抛物线c1向左平移m个单位长度,平移后得到新抛物线的顶点为M,与x轴的交点从左到右依次为A、B;将抛物线c2向右也平移m个单位长度,平移后得到新抛物线的顶点为N,与x轴的交点从左到右依次为D、E.
①当B、D是线段AE的三等分点时,求m的值;②在平移过程中,是否存在以点A、N、E、M为顶点的四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.

解答下列问题:

(1)如果AB=AC,BAC=90,当点D在线段BC上时(与点B不重合),如图2,线段CF,BD所在直线位置关系为 ,数量关系为 .

(2)如果AB=AC,BAC=90,当点D在线段BC的延长线时,如图3,(1)中的结论是否仍然成立,并说明理由。

(3)如果AB=AC,BAC是钝角,点D在线段BC上,当∠ABC满足什么条件时,CFBC(C、F不重合)画出图形,并说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在□ABCD中,ACBD于点O,点E、点F分别是OAOC的中点,请判断线段BEDF的关系,并证明你的结论

查看答案和解析>>

同步练习册答案