【题目】如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
解答下列问题:
(1)如果AB=AC,∠BAC=90,当点D在线段BC上时(与点B不重合),如图2,线段CF,BD所在直线位置关系为 ,数量关系为 .
(2)如果AB=AC,∠BAC=90,当点D在线段BC的延长线时,如图3,(1)中的结论是否仍然成立,并说明理由。
(3)如果AB=AC,∠BAC是钝角,点D在线段BC上,当∠ABC满足什么条件时,CF⊥BC(点C、F不重合)画出图形,并说明理由。
【答案】(1)CF与BD位置关系是垂直,数量关系是相等(2)当点D在BC的延长线上时①的结论仍成立 (3)当∠ACB=45时
【解析】分析: (1)①证明△BAD≌△CAF,可得:BD=CF,∠B=∠ACF=45°,则∠BCF=∠ACB+∠ACF=90°,所以BD与CF相等且垂直;
②①的结论仍成立,同理证明△DAB≌△FAC,可得结论:垂直且相等;
(2)当∠ACB满足45°时,CF⊥BC;如图4,作辅助线,证明△QAD≌△CAF,即可得出结论.
详解:
(1)CF与BD位置关系是垂直,数量关系是相等
(2)当点D在BC的延长线上时①的结论仍成立
由正方形ADEF得AD=AF,∠DAF=90°
∵∠BAC=90v,
∴∠DAF=∠BAC,
∴∠DAB=∠FAC
又∵AB=AC,
∴△DAB≌△FAC,
∴CF=BD
∠ACF=∠ABD
∵∠BAC=90°,AB=AC
∴∠ABC=45°
∴∠ACF=45°
∴∠BCF=∠ACB+∠ACF=90°
即CF⊥BD.
(3)当∠ACB=45°时,CF⊥BD,理由:
过点A作AG⊥AC交BC于点G
∴AC=AG
可证得:△GAD≌△CAF
∴∠ACF=∠AGD=45°
∠BCF=∠ACB+∠ACF=90°
即CF⊥BD.
点睛: 本题是四边形的综合题,考查了正方形、等腰直角三角形、全等三角形的性质和判定,本题的三个结论都是证明三角形全等得出,所以利用SAS证明三角形全等是本题的关键;第(2)问,恰当地作辅助线,构建等腰直角三角形,同样也是构建两个三角形全等得出结论.
科目:初中数学 来源: 题型:
【题目】如图,点O是△ABC内一点,连结OB、OC,并将AB、OB、OC、AC的中点D、E、F、G依次连结,得到四边形DEFG.
(1)求证:四边形DEFG是平行四边形;
(2)若M为EF的中点,OM=3,∠OBC和∠OCB互余,求DG的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△AOB中,两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,将△AOB绕点B逆时针旋转90°后得到△A′O′B.若反比例函数y= 的图象恰好经过斜边A′B的中点C,S△ABO=16,tan∠BAO=2,则k的值为( )
A.20
B.22
C.24
D.26
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场在一楼与二楼之间装有一部自动扶梯,以均匀的速度向上行驶,一男孩与一女孩同时从自动扶梯上走到二楼(扶梯本身也在行驶).如果二人都做匀速运动,且男孩每分钟走动的级数是女孩的两倍.又已知男孩走了27级到达顶部,女孩走了18级到达顶部(二人每步都只跨1级).
(1)扶梯在外面的部分有多少级.
(2)如果扶梯附近有一从二楼下到一楼的楼梯,台阶级数与扶梯级数相等,这两人各自到扶梯顶部后按原速度走下楼梯,到一楼后再乘坐扶梯(不考虑扶梯与楼梯间的距离).则男孩第一次追上女孩时,他走了多少台阶?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.
(1)如图一,若△ABC是等边三角形,且AB=AC=2,点D在线段BC上,
①求证:∠BCE+∠BAC=180°;
②当四边形ADCE的周长取最小值时,求BD的长.
(2)若∠BAC60° ,当点D在射线BC上移动,则∠BCE和∠BAC 之间有怎样的数量关系?并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com