精英家教网 > 初中数学 > 题目详情

【题目】如图,在Rt△AOB中,两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,将△AOB绕点B逆时针旋转90°后得到△A′O′B.若反比例函数y= 的图象恰好经过斜边A′B的中点C,SABO=16,tan∠BAO=2,则k的值为( )

A.20
B.22
C.24
D.26

【答案】C
【解析】解:在Rt△AOB中,∵tan∠BAO= =2,
∴可以假设OB=2k,OA=k,
k2k=16,
∴k=4或﹣4(舍弃),
∴OA=4,OB=8,
∵BC=CA′,
∴C(4,6),
∵反比例函数y= 的图象经过点C,
∴k=24.
故选C.

在Rt△AOB中,由tan∠BAO= =2,可以假设OB=2k,OA=k,由题意 k2k=16,推出k=4,可得OA=4,OB=8,C(4,6),由此即可解决问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面积SABC=15,抛物线y=ax2+bx+c(a≠0)经过A、B、C三点.

(1)求此抛物线的函数表达式;
(2)设E是y轴右侧抛物线上异于点B的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH.则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长;
(3)在抛物线上是否存在异于B、C的点M,使△MBC中BC边上的高为 ?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCEBC上的一点,EC=2BE,点DAC的中点,设ABC,ADF,BEF的面积分别为=24,则=___________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】10分在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要35万元,购买2台电脑和1台电子白板需要25万元

1求每台电脑、每台电子白板各多少万元?

2根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.

解答下列问题:

(1)如果AB=AC,BAC=90,当点D在线段BC上时(与点B不重合),如图2,线段CF,BD所在直线位置关系为 ,数量关系为 .

(2)如果AB=AC,BAC=90,当点D在线段BC的延长线时,如图3,(1)中的结论是否仍然成立,并说明理由。

(3)如果AB=AC,BAC是钝角,点D在线段BC上,当∠ABC满足什么条件时,CFBC(C、F不重合)画出图形,并说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知x=y,则下列各式①x﹣3=y﹣3,②4x=6y,③﹣2x=﹣2y,④,⑤,⑥,其中正确的有(  )

A. ①②③ B. ④⑤⑥ C. ①③⑤ D. ②④⑥

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算.

(1)y=2y﹣1

(2)5(x﹣5)+2(x﹣12)=0

(3)y﹣=1﹣

(4)2(x﹣2)﹣(4x﹣1)=3(1﹣x)

(5)

(6)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某蔬菜经销商去蔬菜生产基地批发某种蔬菜,已知这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元;若超过60千克时,批发的这种蔬菜全部打八折,但批发总金额不得少于300元.
(1)根据题意,填写如表:
(2)经调查,该蔬菜经销商销售该种蔬菜的日销售量y(千克)与零售价x(元/千克)是一次函数关系,其图象如图,求出y与x之间的函数关系式;
(3)若该蔬菜经销商每日销售此种蔬菜不低于75千克,且当日零售价不变,那么零售价定为多少时,该经销商销售此种蔬菜的当日利润最大?最大利润为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,CDABEFAB,垂足分别为DF,∠1=∠2,

(1)试判断DGBC的位置关系,并说明理由.

(2)若∠A=70°,∠BCG=40°,求∠AGD的度数.

查看答案和解析>>

同步练习册答案