精英家教网 > 初中数学 > 题目详情

【题目】以下四组条件中,无法判定△ABC≌△DEF的是(

A. AB=DE,BC=EF,B=EB. B=E,BC=EF,C=F

C. B=E,A=D,BC=EFD. AB=DE,BC=EF,C=D

【答案】D

【解析】

全等三角形的判定方法有:SASASAAASSSSHL,而SSAAAA都不能判定两三角形全等,根据以上内容判断即可.

解:A、根据ABDEBCEF,∠B=E,符合SAS,可判定ABC≌△DEF

B、根据∠B=EBC=EF,∠C=F,符合ASA,可判定ABC≌△DEF

C、根据∠B=E,∠A=DBC=EF,符合AAS,可判定ABC≌△DEF

D、根据AB=DEBC=EF,∠C=D,不符合全等三角形的判定定理,不能判定ABC≌△DEF

故选:D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图1),图2是从图1引出的平面图.假设你站在A处测得塔杆顶端C的仰角是55°,沿HA方向水平前进43米到达山底G处,在山顶B处发现正好一叶片到达最高位置,此时测得叶片的顶端DDCH在同一直线上)的仰角是45°.已知叶片的长度为35米(塔杆与叶片连接处的长度忽略不计),山高BG10米,BGHGCHAH,求塔杆CH的高.(参考数据:tan55°≈1.4tan35°≈0.7sin55°≈0.8sin35°≈0.6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交ACAB边于EF若点DBC边的中点,点M为线段EF上一动点,则周长的最小值为  

A. 6 B. 8 C. 10 D. 12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,AC的垂直平分线DEABC的角平分线相交于点D,垂足为点E,若ABC=72°,求ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(12分)如图所示是隧道的截面由抛物线和长方形构成,长方形的长是12 m,宽是4 m.按照图中所示的直角坐标系,抛物线可以用y=x2+bx+c表示,且抛物线上的点COB的水平距离为3 m,到地面OA的距离为m.

(1)求抛物线的函数关系式,并计算出拱顶D到地面OA的距离;

(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向车道,那么这辆货车能否安全通过?

(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AD=BCADBCAB=5AD=3AE平分∠DABBC的延长线于F点,则CF=_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的图象如图,下列四个结论:

①4a+c<0;②m(am+b)+b>a(m≠﹣1);③关于x的一元二次方程ax2+(b﹣1)x+c=0没有实数根;④ak4+bk2<a(k2+1)2+b(k2+1)(k为常数).其中正确结论的个数是(  )

A. 4个 B. 3个 C. 2个 D. 1个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在长方形ABCD中,AB=CD=8cmBC=14cm,点P从点B出发,以2cm/秒的速度沿BC向点C运动,设点P的运动时间为t秒:

1BP= cm(用t的代数式表示)

2t为何值时,ABPDCP

3当点P从点B开始运动,同时,点Q从点C出发,以v cm/秒的速度沿CD向点D运动,是否存在这样v的值,使得ABPPQC全等?若存在,请求出v的值;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式:

①(2a+b)(m+n);②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b);④2am+2an+bm+bn,你认为其中正确的有( )

A. ①② B. ③④ C. ①②③ D. ①②③④

查看答案和解析>>

同步练习册答案