精英家教网 > 初中数学 > 题目详情

【题目】二次函数y=ax2+bx+c(a≠0)的图象如图,下列四个结论:

①4a+c<0;②m(am+b)+b>a(m≠﹣1);③关于x的一元二次方程ax2+(b﹣1)x+c=0没有实数根;④ak4+bk2<a(k2+1)2+b(k2+1)(k为常数).其中正确结论的个数是(  )

A. 4个 B. 3个 C. 2个 D. 1个

【答案】D

【解析】①因为二次函数的对称轴是直线x=﹣1,由图象可得左交点的横坐标大于﹣3,小于﹣2,

所以﹣=﹣1,可得b=2a,

当x=﹣3时,y<0,

即9a﹣3b+c<0,

9a﹣6a+c<0,

3a+c<0,

∵a<0,

∴4a+c<0,

所以①选项结论正确;

②∵抛物线的对称轴是直线x=﹣1,

∴y=a﹣b+c的值最大,

即把x=m(m≠﹣1)代入得:y=am2+bm+c<a﹣b+c,

∴am2+bm<a﹣b,

m(am+b)+b<a,

所以此选项结论不正确;

③ax2+(b﹣1)x+c=0,

△=(b﹣1)2﹣4ac,

∵a<0,c>0,

∴ac<0,

∴﹣4ac>0,

∵(b﹣1)2≥0,

∴△>0,

∴关于x的一元二次方程ax2+(b﹣1)x+c=0有实数根;

④由图象得:当x>﹣1时,y随x的增大而减小,

∵当k为常数时,0≤k2≤k2+1,

∴当x=k2的值大于x=k2+1的函数值,

即ak4+bk2+c>a(k2+1)2+b(k2+1)+c,

ak4+bk2>a(k2+1)2+b(k2+1),

所以此选项结论不正确;

所以正确结论的个数是1个,

故选:D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(﹣3,4),点Cx轴的正半轴上,直线ACy轴于点M,AB边交y轴于点H,连接BM.

(1)菱形ABCO的边长   

(2)求直线AC的解析式;

(3)动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设PMB的面积为S(S≠0),点P的运动时间为t秒,

①当0<t<时,求St之间的函数关系式;

②在点P运动过程中,当S=3,请直接写出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AB=AD=6AB⊥BCAD⊥CD∠BAD=60°,点MN分别在ABAD边上,若AMMB=ANND=12,则tan∠MCN=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,AB是⊙O的直径,C是⊙O上一点,过C点的切线与AB的延长线交于点D,CEAB交⊙O于点E,连接AC、BC、AE.

(1)求证:①∠DCB=CAB;CDCE=CBCA;

(2)作CGAB于点G.若tan∠CAB=(k1),求的值(用含k的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,二次函数y=ax2+bx+c的图象开口向上,且经过点A(0,).

(1)若此函数的图象经过点(1,0)、(3,0),求此函数的表达式;

(2)若此函数的图象经过点B(2,﹣),且与x轴交于点C、D.

①填空:b=_____(用含α的代数式表示);

②当CD2的值最小时,求此函数的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校计划开设四门选修课:乐器、舞蹈、绘画、书法.为提前了解学生的选修情况,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行了整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:

(1)本次调查的学生共有 人,在扇形统计图中,m的值是

(2)将条形统计图补充完整;

(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请直接写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点A的坐标是(﹣1,0),点B的坐标是(9,0),以AB为直径作⊙O′,交y轴的负半轴于点C,连接AC,BC,过A,B,C三点作抛物线.

(1)求抛物线的解析式;

(2)点EAC延长线上一点,∠BCE的平分线CD交⊙O′于点D,连接BD,求直线BD的解析式;

(3)在(2)的条件下,抛物线上是否存在点P,使得∠PDB=CBD?如果存在,请求出点P的坐标;如果不存在,请说明理由.

第三问改成,在(2)的条件下,点P是直线BC下方的抛物线上一动点,当点P运动到什么位置时,PCD的面积是BCD面积的三分之一,求此时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,O的直径AB=12,P是弦BC上一动点(与点B,C不重合),ABC=30°,过点P作PDOP交O于点D.

(1)如图2,当PDAB时,求PD的长;

(2)如图3,当时,延长AB至点E,使BE=AB,连接DE.

求证:DE是O的切线;

求PC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是直线上一点,平分.则图中互余的角、互补的角各有( )对

A.47B.44C.45D.33

查看答案和解析>>

同步练习册答案