精英家教网 > 初中数学 > 题目详情
(本题10分)如图,已知A是⊙O上一点半径OC的延长线与过点A的直线交于B点,OC=BC,AC=OB.
(1)试判断直线AB与⊙O的位置关系,并说明理由;
(2)若∠ACD=45°,OC=2,求弦AD的长。

(1)相切。理由略
(2)连接OD,由∠ACD=45°知∠AOD=90°,在Rt△AOD中,AD=

分析:
(1)利用题中的边的关系可求出△OAC是正三角形,然后利用角边关系又可求出∠CAB=30°,从而求出∠OAB=90°,所以判断出直线AB与⊙O相切;
(2)作AE⊥CD于点E,由已知条件得出AC=2,再求出AE=CE,根据直角三角形的性质就可以得到AD。
解答:
(1)直线AB是⊙O的切线,理由如下:连接OA。

∵OC=BC,AC=1/2OB,
∴OC=BC=AC=OA,
∴△ACO是等边三角形,
∴∠O=∠OCA=60°,
又∵∠B=∠CAB,
∴∠B=30°,
∴∠OAB=90°.
∴AB是⊙O的切线。
(2)作AE⊥CD于点E,
∵∠O=60°,
∴∠D=30°.
∵∠ACD=45°,AC=OC=2,
∴在Rt△ACE中,CE=AE=/2
∵∠D=30°,
∴AD=
点评:本题考查了切线的判定、直角三角形斜边上的中线、等腰三角形的性质以及圆周角定理,是基础知识要熟练掌握。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,已知⊙O的半径为2cm,点C是直径AB的延长线上一点,且,过点C作⊙O的切线,切点为D,则CD=   ★  cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在半径为1的圆中,180°的圆心角所对的弧长等于          

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图7,已知AB、AC分别为⊙O的直径和弦,D为⌒BC的中点,DE⊥AC于E,DE=6,AC=16.
小题1:求证:DE是⊙O的切线.
小题2:求直径AB的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知关于x的一元二次方程x2-2(R+r)x+d2=0有两个相等的实数根,其中R、r分别为⊙O1、⊙O2的半径,d为两圆的圆心距,则⊙O1与⊙O2的位置关系是      

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,⊙O的半径为5,AB为弦,OCAB,垂足为C,若OC=3,则弦AB的长为(   )
A. 8B.6C.4D.10

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,AB为⊙O的直径,∠ DCB=30°, ∠ DAC=70°,则∠D的度数为
A.70°B.50°C.40°D.30°

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(本小题6分)如图,在中,

小题1:(1)作的外接圆(只需作出图形,并保留作图痕迹);
小题2:(2)求它的外接圆直径。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在半径为18的圆中,120°的圆心角所对的弧长是(   )
A.12?B.10?C.6?D.3

查看答案和解析>>

同步练习册答案