精英家教网 > 初中数学 > 题目详情

【题目】如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1CD交于点O,则图中阴影部分的面积是(  )

A.B.C.D.

【答案】B

【解析】

先根据正方形的边长,求得CB1=OB1=AC-AB1=-1,进而得到,再根据SAB1C1=,以及扇形的面积公式即可得出图中阴影部分的面积.

连结DC1

∵∠CAC1=∠DCA=∠COB1=∠DOC145°

∴∠AC1B145°

∵∠ADC90°

ADC1在一条直线上,

∵四边形ABCD是正方形,

AC,∠OCB145°

CB1OB1

AB11

CB1OB1ACAB11

∴图中阴影部分的面积=

故选B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某工厂有甲种原料,乙种原料,现用两种原料生产处两种产品共件,已知生产每件产品需甲种原料,乙种原料,且每件产品可获得元;生产每件产品甲种原料,乙种原料,且每件产品可获利润元,设生产产品 件(产品件数为整数件),根据以上信息解答下列问题:

(1)生产两种产品的方案有哪几种?

(2)设生产这件产品可获利元,写出关于的函数解析式,写出(1)中利润最大的方案,并求出最大利润.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数ymx2﹣(2m+1x+2m0),请判断下列结论是否正确,并说明理由.

1)当m0时,函数ymx2﹣(2m+1x+2x1时,yx的增大而减小;

2)当m0时,函数ymx2﹣(2m+1x+2图象截x轴上的线段长度小于2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知锐角∠AOB如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD

2)分别以点CD为圆心,CD长为半径作弧,交于点MN

3)连接OMMN

根据以上作图过程及所作图形,下列结论中错误的是(

A. ∠COM=∠CODB. OM=MN,则∠AOB=20°

C. MN∥CDD. MN=3CD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在中,,点分别是边的中点,连接.将绕点逆时针方向旋转,记旋转角为

1)问题发现

①当时,____________;②当时,___________

2)拓展探究试判断:当时,的大小有无变化?请仅就图2的情形给出证明.

3)问题解决

绕点逆时针旋转至三点在同一条直线上时,直接写出线段的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着生活水平的提高,人们对饮水品质的需求越来越高,某公司根据市场需求代理AB两种型号的净水器,每台A型净水器比每台B型净水器进价多200元,用5万元购进A型净水器与用4.5万元购进B型净水器的数量相等

1)求每台A型、B型净水器的进价各是多少元?

2)该公司计划购进AB两种型号的净水器共50台进行试销,其中A型净水器为x台,购买资金不超过9.8万元,试销时A型净水器每台售价2500元,B型净水器每台售价2180元,公司决定从销售A型净水器的利润中按每台捐献a元作为公司帮扶贫困村饮水改造资金.若公司售完50台净水器并捐献扶贫资金后获得的最大利润不低于20200元但不超过23000元,求a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,矩形的顶点的坐标为,顶点分别在轴,轴上,点的坐标为,过点的直线与矩形的边交于点,且点不与点重合.以为一边作菱形,点在矩形的边上,设直线的函数表达式为

1)当时,求直线的函数表达式;

2)当点的坐标为时,求直线的函数表达式;

3)连接,设的面积为的长为,请直接写出的函数表达式及自变量的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为的正方形ABCD中,点EF是对角线AC的三等分点,点P在正方形的边上,则满足PE+PF=的点P的个数是(

A.0B.4C.8D.16

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为更新树木品种,某植物园计划购进甲、乙两个品种的树苗栽植培育若计划购进这两种树苗共41棵,其中甲种树苗的单价为6/棵,购买乙种树苗所需费用y()与购买数量x()之间的函数关系如图所示.

(1)求出yx的函数关系式;

(2)若在购买计划中,乙种树苗的数量不超过35棵,但不少于甲种树苗的数量.请设计购买方案,使总费用最低,并求出最低费用.

查看答案和解析>>

同步练习册答案