【题目】如图1,在△ABC中,∠ACB=90°,BC=2,∠A=30°,点E,F分别是线段BC,AC的中点,连结EF.
(1)线段BE与AF的位置关系是 ,= .
(2)如图2,当△CEF绕点C顺时针旋转a时(0°<a<180°),连结AF,BE,(1)中的结论是否仍然成立.如果成立,请证明;如果不成立,请说明理由.
(3)如图3,当△CEF绕点C顺时针旋转a时(0°<a<180°),延长FC交AB于点D,如果AD=6﹣2,求旋转角a的度数.
【答案】(1)互相垂直;(2)结论仍然成立(3)135°
【解析】
试题(1)结合已知角度以及利用锐角三角函数关系求出AB的长,进而得出答案;
(2)利用已知得出△BEC∽△AFC,进而得出∠1=∠2,即可得出答案;
(3)过点D作DH⊥BC于H,则DB=4-(6-2)=2-2,进而得出BH=-1,DH=3-,求出CH=BH,得出∠DCA=45°,进而得出答案.
试题解析:(1)如图1,线段BE与AF的位置关系是互相垂直;
∵∠ACB=90°,BC=2,∠A=30°,
∴AC=2,
∵点E,F分别是线段BC,AC的中点,
∴=
(2))如图2,∵点E,F分别是线段BC,AC的中点,
∴EC=BC,FC=AC,
∴,
∵∠BCE=∠ACF=α,
∴△BEC∽△AFC,
∴,
∴∠1=∠2,
延长BE交AC于点O,交AF于点M
∵∠BOC=∠AOM,∠1=∠2
∴∠BCO=∠AMO=90°
∴BE⊥AF;
(3)如图3,
∵∠ACB=90°,BC=2,∠A=30°∴AB=4,∠B=60°
过点D作DH⊥BC于H∴DB=4-(6-2)=2-2,
∴BH=-1,DH=3-,又∵CH=2-(-1)=3-,
∴CH=BH,∴∠HCD=45°,∴∠DCA=45°,α=180°-45°=135°.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC=24厘米,BC=16厘米,点D为AB的中点,点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.当点Q的运动速度为_______厘米/秒时,能够在某一时刻使△BPD与△CQP全等.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似地,可以在等腰三角形中建立边角之间的关系.我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad)如图1,在△ABC中,AB=AC,顶角A的正对记作sadA,这时sad.容易知道一个角的大小与这个角的正对值也是相互唯一确定的。根据上述角的正对定义,解答下列问题:
(1)sad= ;
(2)对于<A<,∠A的正对值sadA的取值范围 ;
(3如图2,已知sinA=,其中∠A为锐角,试求sadA的值。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 如图,已知△ABC为等边三角形,D、E分别为BC、AC边上的两动点(与点A、B、C不重合),且总使CD = AE,AD与BE相交于点F.
(1)求证:AD = BE;
(2)求∠BFD的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,∠BAC=90°,对角线AC,BD相交于点P,以AB为直径的⊙O分别交BC,BD于点E,Q,连接EP并延长交AD于点F.
(1)求证:EF是⊙O的切线;
(2)求证:=4BPQP.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙D的直径,AD切⊙D于点A,EC=CB.则下列结论:①BA⊥DA;②OC∥AE;③∠COE=2∠CAE;④OD⊥AC.一定正确的个数有( )
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:将矩形绕点逆时针旋转得到矩形.
(1)如图,当点在上时,求证:
(2)当旋转角的度数为多少时,?
(3)若,请直接写出在旋转过程中的面积的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,∠A=30°,以AB为直径的⊙O交BC于点D,交AC于点E,连结DE,过点B作BP平行于DE,交⊙O于点P,连结EP、CP、OP.
(1)BD=DC吗?说明理由;
(2)求∠BOP的度数;
(3)求证:CP是⊙O的切线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系中,点A、B、C的坐标分别为(﹣1,3)、(﹣4,1)、(﹣2,1),将△ABC沿一确定方向平移得到△A1B1C1,点B的对应点B1的坐标是(1,2),则点A1,C1的坐标分别是 ( )
A. A1(4,4),C1(3,2) B. A1(3,3),C1(2,1)
C. A1(4,3),C1(2,3) D. A1(3,4),C1(2,2)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com