【题目】 如图,已知△ABC为等边三角形,D、E分别为BC、AC边上的两动点(与点A、B、C不重合),且总使CD = AE,AD与BE相交于点F.
(1)求证:AD = BE;
(2)求∠BFD的度数.
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E,F分别是AC,BC的中点,直线EF与⊙O交于G,H两点,若⊙O的半径为6,则GE+FH的最大值为( )
A. 6 B. 9 C. 10 D. 12
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,O为坐标原点,点A(0,1),点C(1,0),正方形AOCD的两条对角线的交点为B,延长BD至点G,使DG=BD,延长BC至点E,使CE=BC,以BG,BE为邻边作正方形BEFG.
(Ⅰ)如图①,求OD的长及的值;
(Ⅱ)如图②,正方形AOCD固定,将正方形BEFG绕点B逆时针旋转,得正方形BE′F′G′,记旋转角为α(0°<α<360°),连接AG′.
①在旋转过程中,当∠BAG′=90°时,求α的大小;
②在旋转过程中,求AF′的长取最大值时,点F′的坐标及此时α的大小(直接写出结果即可).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在Rt△ABC中,a,b分别是∠A,∠B的对边,c为斜边,如果已知两个元素a,∠B,就可以求出其余三个未知元素b,c,∠A.
(1)求解的方法有多种,请你按照下列步骤,完成一种求解过程.
第一步:已知:a,∠B,用关系式:_______________,求出:________________;
第二步:已知:_____,用关系式:_______________,求出:_________________;
第三步:已知:_____,用关系式:_______________,求出:_________________.
(2)请你分别给出a,∠B的一个具体数据,然后按照(1)中的思路,求出b,c,∠A的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】光明社区为了调查居民对社区服务的满意度,随机抽取了社区部分居民进行问卷调查;用表示“很满意”,表示“满意”,表示“比较满意”,表示“不满意”,如图是根据问卷调查统计资料绘制的两幅不完整的统计图.
请你根据统计图提供的信息解答以下问题:
(1)本次问卷调查共调查了多少个居民?
(2)求出调查结果为的人数,并将直方图中部分的图形补充完整;
(3)如果该社区有居民5000人,请你估计对社区服务感到“不满意”的居民约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1和图2,是直线上一动点,两点在直线的同侧,且点所在直线与不平行.
(1)当点运动到位置时,距离点最近,在图1中的直线上画出点的位置;
(2)当点运动到位置时,与点的距离和与点距两相等,请在图2中作出位置;
(3)在直线上是否存在这样一点,使得到点的距离与到点的距离之和最小?若存在请在图3中作出这点,若不存在清说明理由.
(要求:不写作法,请保留作图痕迹)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在△ABC中,∠ACB=90°,BC=2,∠A=30°,点E,F分别是线段BC,AC的中点,连结EF.
(1)线段BE与AF的位置关系是 ,= .
(2)如图2,当△CEF绕点C顺时针旋转a时(0°<a<180°),连结AF,BE,(1)中的结论是否仍然成立.如果成立,请证明;如果不成立,请说明理由.
(3)如图3,当△CEF绕点C顺时针旋转a时(0°<a<180°),延长FC交AB于点D,如果AD=6﹣2,求旋转角a的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①、图②,方格纸中的每个小正方形的边长均为1,小正方形的顶点称为格点,图①和图②中的点A、点B都是格点.分别在图①、图②中画出格点C,并满足下面的条件:
(1)在图①中,使∠ABC=90°.此时AC的长度是 .
(2)在图②中,使AB=AC.此时△ABC的边AB上的高是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD∥BC,AB⊥BC,点E在AB上,∠DEC=90°.
(1)求证:△ADE∽△BEC.
(2)若AD=1,BC=3,AE=2,求AB的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com