精英家教网 > 初中数学 > 题目详情

【题目】光明社区为了调查居民对社区服务的满意度,随机抽取了社区部分居民进行问卷调查;用表示“很满意”,表示“满意”,表示“比较满意”,表示“不满意”,如图是根据问卷调查统计资料绘制的两幅不完整的统计图.

请你根据统计图提供的信息解答以下问题:

(1)本次问卷调查共调查了多少个居民?

(2)求出调查结果为的人数,并将直方图中部分的图形补充完整;

(3)如果该社区有居民5000人,请你估计对社区服务感到“不满意”的居民约有多少人?

【答案】(1)200人;(2)的人数60人,补图见解析;(3) “不满意”的居民约500.

【解析】

1)根据B项直方图中的数值除以扇形统计图中所占的百分数即可求出调查的总人数;

2)用A项所占扇形统计图的百分数与总人数相乘即可;

3)根据扇形统计图中的数据,算出D项所占的百分数,与总人数5000相乘即可.

解:(1)()

(2)的人数

正确补全条形统计图

(3)人,不满意的居民约500

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在AOB中,OA=OB,点C为AB的中点,AB=16,以点O为圈心,6为半径的圆经过点C,分别交OA、OB于点E、F.

(1)求证:AB为O的切线;

(2)求图中阴影部分的面积.(注:结果保留π,sin37°=0.6,cos37°=0.8,tan37°=0.75)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一位运动员推铅球,铅球运行时离地面的高度(米)是关于运行时间(秒)的二次函数.已知铅球刚出手时离地面的高度为米;铅球出手后,经过4秒到达离地面3米的高度,经过10秒落到地面.如图建立平面直角坐标系.

(Ⅰ)为了求这个二次函数的解析式,需要该二次函数图象上三个点的坐标.根据题意可知,该二次函数图象上三个点的坐标分别是____________________________

(Ⅱ)求这个二次函数的解析式和自变量的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似地,可以在等腰三角形中建立边角之间的关系.我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad)如图1,在ABC中,AB=AC,顶角A的正对记作sadA,这时sad.容易知道一个角的大小与这个角的正对值也是相互唯一确定的。根据上述角的正对定义,解答下列问题:

1sad=

2)对于AA的正对值sadA的取值范围

3如图2,已知sinA=,其中∠A为锐角,试求sadA的值。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】佳佳果品店在批发市场购买某种水果销售,第一次用1200元购进若干千克,并以每千克8元出售,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了10%,用1452元所购买的数量比第一次多20千克,以每千克9元售出100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价50%售完剩余的水果.

1)求第一次水果的进价是每千克多少元?

2)该果品店在这两次销售中,总体上是盈利还是亏损?盈利或亏损了多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 如图,已知△ABC为等边三角形,DE分别为BCAC边上的两动点(与点ABC不重合),且总使CD = AEADBE相交于点F

1)求证:AD = BE

2)求∠BFD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,BAC=90°,对角线AC,BD相交于点P,以AB为直径的O分别交BC,BD于点E,Q,连接EP并延长交AD于点F.

(1)求证:EF是O的切线;

(2)求证:=4BPQP.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:将矩形绕点逆时针旋转得到矩形.

1)如图,当点上时,求证:

2)当旋转角的度数为多少时,

3)若,请直接写出在旋转过程中的面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD是正方形, GBC上(除端点外)的任意一点,DE⊥AG于点E,BF∥DE,交AG于点F.给出以下结论:①△AED≌△BFA;②DE﹣BF=EF;③△BGF∽△DAE;④DE﹣BG=FG.其中正确的有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步练习册答案