精英家教网 > 初中数学 > 题目详情

【题目】数学活动课上,老师提出问题:如图1,有一张长,的长方形纸板,在纸板的四个角裁去四个相同的小正方形,然后把四边折起来,做成-一个无盖的盒子,问小正方形的边长为多少时,盒子的体积最大. 面是探究过程,请补充完整:

1)设小正方形的边长为,体积为,根据长方体的体积公式得到的关系式 ;

2)确定自变量的取值范围是

3)列出的几组对应值.

···

···

4)在平面直角坐标系中,描出以补全后的表中各对对应值为坐标的点画出该函数的图象如图2,结合画出的函数图象,当小正方形的边长约为 时, 盒子的体积最大,最大值约为.(估读值时精确到)

【答案】1;(2;(33,2;(40.55

【解析】

1)根据长方形和正方形边长分别求出长方体的长、宽、高,然后即可得出的关系式;

2)边长都大于零,列出不等式组,求解即可;

3)将的值代入关系式,即可得解;

4)根据函数图象,由最大值即可估算出的值.

1)由题意,得

长方体的长为,宽为,高为

yx的关系式:

2)由(1)得

∴变量x的取值范围是

3)将代入(1)中关系式,得

分别为32

4)由图象可知,与3.03对应的值约为0.55.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,对角线AC、BD相交于点O,EOC上动点(与点O不重合),作AFBE,垂足为G,交BCF,交B0H,连接OG,CC.

(1)求证:AH=BE;

(2)试探究:∠AGO的度数是否为定值?请说明理由;

(3)OGCG,BG=,求OGC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与ABC相似的三角形所在的网格图形是(  )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线轴交于两点(点在点的左侧),与轴交于点,对称轴与轴交于点,点在抛物线上.

1)求直线的解析式.

2)点为直线下方抛物线上的一点,连接.的面积最大时,连接,点是线段的中点,点是线段上的一点,点是线段上的一点,求的最小值.

3)点是线段的中点,将抛物线轴正方向平移得到新抛物线经过点的顶点为点,在新抛物线的对称轴上,是否存在点,使得为等腰三角形?若存在,直接写出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形中,.将向内翻折,点 落在上,记为,折痕为.若将沿向内翻折,点恰好 落在上,记为,则的长为(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在一张矩形纸片中,对角线,点分别是的中点,现将这张纸片折叠,使点落在上的点处,折痕为,若的延长线恰好经过点,则点到对角线的距离为( .

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某班数学兴趣小组对函数的图象和性质进行了探究,探究过程如下,请补充完整.

1)自变量的取值范围是全体实数,的几组对应值列表如下:其中, .

……

0

1

2

3

……

……

3

0

0

3

……

2)根据表中数据,在如图所示的平面直角坐标系中描点,已画出了函数图象的一部分,请画出该函数图象的另一部分;

3)观察函数图象,写出一条函数的性质:

4)观察函数图象发现:若关于的方程4个实数根,则的取值范围是 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A(0,1,点B(﹣9,10,AC∥x轴,点P时直线AC下方抛物线上的动点.

(1求抛物线的解析式;(2过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;

(3当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD是由三个全等矩形拼成的,ACDEEFFGHGHB分别交于点PQKMN,设EPQGKMBNC的面积依次为S1S2S3.若S1+S3=30,则S2的值为( ).

A.6B.8

C.10D.12

查看答案和解析>>

同步练习册答案