【题目】如图,在△ABC中,∠BAC=90°,E为边BC上的点,且AB=AE,D为线段BE的中点,连接AD,过点E作EF⊥AE,过点A作AF∥BC,且AF,EF相交于点F.
(1)求证:∠B=∠DAC.
(2)求证:AC=EF.
【答案】(1)证明见解析;(2)证明见解析.
【解析】
(1)根据等腰三角形三线合一性质可得AD⊥BC,继而可得∠B+∠BAD=90°,
由于∠BAC=90°,可得∠BAD+∠DAC=90°,故∠B=∠DAC;
(2)由“ASA”可证△ABC≌△EAF,可得AC=EF.
证明:(1)∵AB=AE,D为线段BE的中点,
∴AD⊥BC,
∴∠B+∠BAD=90°,
∵∠BAC=90°,
∴∠BAD+∠DAC=90°,
∴∠B=∠DAC;
(2)∵AF∥BC,
∴∠FAE=∠AEB,
∵AB=AE,
∴∠B=∠AEB,
∴∠B=∠FAE,
又∵∠AEF=∠BAC=90°,AB=AE,
∴△ABC≌△EAF(ASA),
∴AC=EF.
科目:初中数学 来源: 题型:
【题目】如图,过点A(2,0)的两条直线,分别交轴于B,C,其中点B在原点上方,点C在原点下方,已知AB=.
(1)求点B的坐标;
(2)若△ABC的面积为4,求的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一次研究性学习活动中,同学们看到了工人师傅在木板上画一个直角三角形的过程(如图所示):画线段AB,过点A任作一条直线l,以点A为圆心,以AB长为半径画弧,与直线l相交于两点C、D,连接BC和BD.则△BCD就是直角三角形.
(1)请你说明△BCD是直角三角形的道理;
(2)请利用上述方法作一个直角三角形,使其中一个锐角为60°(不写作法,保留作图
痕迹,在图中注明60°的角).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,直线l:y=x+m与x轴、y轴分别交于点A和点B(0,﹣1),抛物线y=x2+bx+c经过点B,与直线l的另一个交点为C(4,n).
(1)求n的值和抛物线的解析式;
(2)点D在抛物线上,DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2),设点D的横坐标为t(0<t<4),矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;
(3)将△AOB绕平面内某点M旋转90°或180°,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A1的横坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解余姚市对“垃圾分类知识”的知晓程度,某数学学习兴趣小组对市民进行随机抽样的问卷调查,调查结果分为“A.非常了解”、“B.了解”、“C.基本了解”、“D.不太了解”四个等级进行统计,并将统计结果绘制成了如下两幅不完整的统计图(图1、图2),请根据图中的信息解答下列问题.
(1)这次调查的市民人数为 人,图2中,m=
(2)补全图1中的条形统计图;
(3)据统计,2017年余姚约有市民140万人,那么根据抽样调查的结果,可估计对“垃圾分类知识”的知晓程度为“B.了解”的市民约有多少万人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,E是BC的中点,连接AE并延长交DC的延长线于点F.
(1)求证:AB=CF;
(2)连接DE,若AD=2AB,求证:DE⊥AF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P.
(1)若AE=CF;
①求证:AF=BE,并求∠APB的度数;
②若AE=2,试求APAF的值;
(2)若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com