【题目】如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.
求证:(1)△ACE≌△BCD;(2).
【答案】(1)证明见解析;(2)证明见解析.
【解析】
(1)本题要判定△ACE≌△BCD,已知△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,则DC=EC,AC=BC,∠ACB=∠ECD,又因为两角有一个公共的角∠ACD,所以∠BCD=∠ACE,根据SAS得出△ACE≌△BCD.
(2)由(1)的论证结果得出∠DAE=90°,AE=DB,从而求出AD2+DB2=DE2.
(1)∵∠ACB=∠ECD=90°,∴∠ACD+∠BCD=∠ACD+∠ACE,即∠BCD=∠ACE.
∵BC=AC,DC=EC,∴△ACE≌△BCD.
(2)∵△ACB是等腰直角三角形,∴∠B=∠BAC=45°.
∵△ACE≌△BCD,∴∠B=∠CAE=45°,AE=BD,∴∠DAE=∠CAE+∠BAC=45°+45°=90°,∴AD2+AE2=DE2,∴AD2+DB2=DE2.
科目:初中数学 来源: 题型:
【题目】2018年我市体育中考总分60分,其中男生1000米跑为必选项目,再在立定跳远、跳绳、实心球掷远、篮球运球和足球运球中选择两项;女生800米跑为必选项目,再在立定跳远、跳绳、仰卧起坐、篮球运球和足球运球中选择两项某校对得分超过40分的20位学生的成绩m进行统计,结果如频数分布表所示:
求a的值;
若用扇形图来描述,求分数在内所对应的扇形图的圆心角的大小;
若男生小明在刚开始训练时在选考项目随机选择两项进行训练,试用列举法求小明选择”跳绳篮球运球“的概率提示:可以用字母表示各个项目
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,△ABE和△CDF为直角三角形,∠AEB=∠CFD=90°,AE=CF=5,BE=DF=12,则EF的长是( )
A. 7 B. 8 C. 7 D. 7
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知AB,CD都是的直径,连接DB,过点C的切线交DB的延长线于点E.
如图1,求证:;
如图2,过点A作交EC的延长线于点F,过点D作,垂足为点G,求证:;
如图3,在的条件下,当时,在外取一点H,连接CH、DH分别交于点M、N,且,点P在HD的延长线上,连接PO并延长交CM于点Q,若,,,求线段HM的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:△ABC是边长为3的等边三角形,以BC为底边作一个顶角为120等腰△BDC.点M、点N分别是AB边与AC边上的点,并且满足∠MDN=60
(1)如图1,当点D在△ABC外部时,求证:BM+CN=MN;
(2)当点D在△ABC内部时,其它条件不变,请在图2中补全图形,并直接写出△AMN的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD的顶点A,B在x轴上,点A在点B的左侧,点D在y轴的正半轴上,∠BAD=60°,点A的坐标为(-2,0).
(1)求线段AD所在直线的表达式;
(2)动点P从点A出发,以每秒1个单位长度的速度,按照A→D→C→B→A的顺序在菱形的边上匀速运动一周,设运动时间为t秒.求t为何值时,以点P为圆心、以1为半径的圆与对角线AC相切?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司生产的一种健身产品在市场上受到普遍欢迎,每年可在国内、国外市场上全部售完,该公司的年产量为6千件,若在国内市场销售,平均每件产品的利润(元)与国内销售数量(千件)的关系为:若在国外销售,平均每件产品的利润(元)与国外的销售数量t(千件)的关系为:
(1)用的代数式表示t为:t= ;当0<≤4时,与的函数关系式为:= ;当4≤< 时,=100;
(2)求每年该公司销售这种健身产品的总利润W(千元)与国内的销售数量x(千件)的函数关系式,并指出x的取值范围;
(3)该公司每年国内、国外的销量各为多少时,可使公司每年的总利润最大?最大值为多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com