【题目】如图,中,,点、分别为的外心和内心,,,则的值为( )
A. B. C. D.
【答案】C
【解析】
如图,作△ABC的内切圆⊙I,过点I作ID⊥BC于D,IE⊥AC于E,IN⊥AB于N.先根据勾股定理求出AB=10,得到△ABC的外接圆半径AO=5,再证明四边形IECD是正方形,根据内心的性质和切线长定理求出⊙I的半径r=2,则ON=1,然后在Rt△OIN中,运用勾股定理即可求解.
如图,作△ABC的内切圆⊙I,过点I作ID⊥BC于D,IE⊥AC于E,IN⊥AB于N.
在Rt△ABC中,∵
∴
∵点O为△ABC的外心,
∴AO为外接圆半径,
设⊙I的半径为r,则ID=IE=r,
又∵
∴四边形IECD是正方形,
∴CE=CD=r,AE=AN=6r,BD=BN=8r,
∵AB=10,
∴8r+6r=10,
解得r=2,
∴IN=r=2,AN=6r=4.
在Rt△OIN中,∵
∴
故选:C.
科目:初中数学 来源: 题型:
【题目】如图,在二次函数y=ax2+bx+c的图象中,小林观察得出下面六条信息:①ab>0;②c<0;③2a+3b=0;④4a+2b+c<0,⑤一元二次方程ax2+bx+c=4有两个不相等实根.你认为其中正确信息的个数有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形.如果AB=13,EF=7,那么AH等于_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(4,0),与y轴交于点C(0,4).
(1)求抛物线的解析式;
(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值;
(3)点D为抛物线对称轴上一点.
①当△BCD是以BC为直角边的直角三角形时,直接写出点D的坐标;
②若△BCD是锐角三角形,直接写出点D的纵坐标n的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,在笔山银子岩坡顶处的同一水平面上有一座移动信号发射塔,
笔山职中数学兴趣小组的同学在斜坡底处测得该塔的塔顶的仰角为,然后他们沿着坡度为的斜坡攀行了米,在坡顶处又测得该塔的塔顶的仰角为.求:
坡顶到地面的距离;
移动信号发射塔的高度(结果精确到米).
(参考数据:,,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的有( )
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,直线AB交y轴于A(0,a),交x轴于B(b,0),且a,b满足(a﹣b)2+|3a+5b﹣88|=0.
(1)求点A,B的坐标;
(2)如图1,已知点D(2,5),求点D关于直线AB对称的点C的坐标.
(3)如图2,若P是∠OBA的角平分线上的一点,∠APO=67.5°,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把两个直角三角形如图放置,使与重合,与相交于点,其中,,,,.
图中线段的长________;________
如图,把绕着点逆时针旋转度得,与相交于点,若恰好是以为底边的等腰三角形,求线段的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com