【题目】如图,点C为线段AB上一点,△ACM,△CBN是等边三角形,直线AN,MC交于点E,直线BM,CN交于点F.
(1)求证:AN=MB;
(2)求证:△CEF为等边三角形;
(3)将△ACM绕点C按逆时针方向旋转90°,其他条件不变,在(2)中画出符合要求的图形,并判断(1)(2)题中的两结论是否依然成立.并说明理由.
【答案】
(1)证明:∵△ACM,△CBN是等边三角形,
∴AC=MC,BC=NC,∠ACM=60°,∠NCB=60°,
在△CAN和△MCB中,
,
∴△CAN≌△MCB(SAS),
∴AN=BM
(2)证明:∵△CAN≌△MCB,
∴∠CAN=∠CMB,
又∵∠MCF=180°﹣∠ACM﹣∠NCB=180°﹣60°﹣60°=60°,
∴∠MCF=∠ACE,
在△CAE和△CMF中,
,
∴△CAE≌△CMF(ASA),
∴CE=CF,
∴△CEF为等腰三角形,
又∵∠ECF=60°,
∴△CEF为等边三角形
(3)解:连接AN,BM,
∵△ACM、△CBN是等边三角形,
∴AC=MC,BC=CN,∠ACM=∠BCN=60°,
∵∠ACB=90°,
∴∠ACN=∠MCB,
在△ACN和△MCB中,
,
∴△ACN≌△MCB(SAS),
∴AN=MB.
当把MC逆时针旋转90°后,AC也旋转了90°,因此∠ACB=90°,很显然∠FCE>90°,因此三角形FCE绝对不可能是等边三角形,
即结论1成立,结论2不成立.
【解析】(1)可通过全等三角形来得出简单的线段相等,证明AN=BM,只要求出三角形ACN和MCB全等即可,这两个三角形中,已知的条件有AC=MC,NC=CB,只要证明这两组对应边的夹角相等即可,我们发现∠ACN和∠MCB都是等边三角形的外角,因此它们都是120°,这样就能得出两三角形全等了.也就证出了AN=BM.(2)我们不难发现∠ECF=180﹣60﹣60=60°,因此只要我们再证得两条边相等即可得出三角形ECF是等边三角形,可从EC,CF入手,由(1)的全等三角形我们知道,∠MAC=∠BMC,又知道了AC=MC,∠MCF=∠ACE=60°,那么此时三角形AEC≌三角形MCF,可得出CF=CE,于是我们再根据∠ECF=60°,便可得出三角形ECF是等边三角形的结论.(3)判定结论1是否正确,也是通过证明三角形ACN和BCM来求得.这两个三角形中MC=AC,NC=BC,∠MCB和∠ACN都是60°+∠ACB,因此两三角形就全等,AN=BM,结论1正确.如图,当把MC逆时针旋转90°后,AC也旋转了90°,因此∠ACB=90°,很显然∠FCE>90°,因此三角形FCE绝对不可能是等边三角形.
科目:初中数学 来源: 题型:
【题目】(问题背景)
(1)如图1的图形我们把它称为“8字形”,请说理证明∠A+∠B=∠C+∠D
(简单应用)
(2)如图2,AP、CP分别平分∠BAD、∠BCD,若∠ABC=20°,∠ADC=26°,求∠P的度数(可直接使用问题(1)中的结论)
(问题探究)
(3)如图3,直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,若∠ABC=36°,∠ADC=16°,试求∠P的度数
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在某超市小明买了1千克甲种糖果和2千克乙种糖果,共付38元;小强买了2千克甲种糖果和0.5千克乙种糖果,共付27元.
(1)求该超市甲、乙两种糖果每千克各需多少元?
(2)某顾客到该超市购买甲、乙两种糖果共20千克混合,欲使总价不超过240元,问该顾客混合的糖果中甲种糖果最少多少千克?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC,∠A=36°,∠B=72°,AC的垂直平分线分别交AC、AB于点D,E,则图中等腰三角形的个数为( )
A.2个
B.3个
C.4个
D.5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两车同时从A地出发,各自都以自己的速度匀速向B地行驶,甲车先到B地,停车1小时后按原速匀速返回,直到两车相遇.已知,乙车的速度是60千米/时,如图是两车之间的距离y(千米)与乙车行驶的时间x(小时)之间的函数图象,则下列说法不正确的是( )
A.A、B两地之间的距离是450千米
B.乙车从出发到与甲车返回时相遇所用的时间是6.6小时
C.甲车的速度是80千米/时
D.点M的坐标是(6,90)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O的半径为5,弦AB长为8,过AB的中点E有一动弦CD(点C只在弦AB所对的劣弧上运动,且不与A、B重合),设CE=x,ED=y,下列图象中能够表示y与x之间函数关系的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.
(1)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P,Q分别从A,B同时出发,经过几秒,使△PBQ的面积等于8cm2?
(2)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P,Q分别从A,B同时出发,线段PQ能否将△ABC分成面积相等的两部分?若能,求出运动时间;若不能说明理由.
(3)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C点出发以2cm/s的速度移动,P,Q同时出发,问几秒后,△PBQ的面积为1?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com