【题目】如图,抛物线y=ax2+c(a≠0)经过C(2,0),D(0,﹣1)两点,并与直线y=kx交于A、B两点,直线l过点E(0,﹣2)且平行于x轴,过A、B两点分别作直线l的垂线,垂足分别为点M、N.
(1)求此抛物线的解析式;
(2)求证:AO=AM;
(3)探究:
①当k=0时,直线y=kx与x轴重合,求出此时的值;
②试说明无论k取何值,的值都等于同一个常数.
【答案】解:(1)y=x2﹣1
(2)详见解析
(3)详见解析
【解析】
(1)把点C、D的坐标代入抛物线解析式求出a、c,即可得解。
(2)根据抛物线解析式设出点A的坐标,然后求出AO、AM的长,即可得证。
(3)①k=0时,求出AM、BN的长,然后代入计算即可得解;
②设点A(x1,x12﹣1),B(x2,x22﹣1),然后表示出,再联立抛物线与直线解析式,消掉未知数y得到关于x的一元二次方程,利用根与系数的关系表示出x1+x2,x12,并求出x12+x22,x12x22,然后代入进行计算即可得解。
解:(1)∵抛物线y=ax2+c(a≠0)经过C(2,0),D(0,﹣1),
∴,解得。
∴抛物线的解析式为y=x2﹣1。
(2)证明:设点A的坐标为(m,m2﹣1),
则。
∵直线l过点E(0,﹣2)且平行于x轴,∴点M的纵坐标为﹣2。
∴AM=m2﹣1﹣(﹣2)=m2+1。
∴AO=AM。
(3)①k=0时,直线y=kx与x轴重合,点A、B在x轴上,
∴AM=BN=0﹣(﹣2)=2,
∴。
②k取任何值时,设点A(x1,x12﹣1),B(x2,x22﹣1),
则。
联立,消掉y得,x2﹣4kx﹣4=0,
由根与系数的关系得,x1+x2=4k,x1x2=﹣4,
∴x12+x22=(x1+x2)2﹣2x1x2=16k2+8,x12x22=16。
∴。
∴无论k取何值,的值都等于同一个常数1。
科目:初中数学 来源: 题型:
【题目】某大型超市投入15000元资金购进、两种品牌的矿泉水共600箱,矿泉水的成本价和销售价如下表所示:
类别/单价 | 成本价(元/箱) | 销售价(元/箱) |
A品牌 | 20 | 32 |
B品牌 | 35 | 50 |
(1)该大型超市购进、品牌矿泉水各多少箱?
(2)全部销售完600箱矿泉水,该超市共获得多少利润?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】安徽某水产养殖户去年利用“稻虾混养”使每千克小龙虾养殖成本降为6元,在整个销售旺季的80天里,销售单价P(元/千克)与时间第t(天)之间的函数关系为:P=,日销售量y(千克)与时间第t(天)之间的函数关系如图所示.
(1)求日销售y与时间t的函数关系式?
(2)设日销售利润为W(元),求W与t之间的函数表达式;
(3)日销售利润W哪一天最大?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形以点为圆心,以任意长为半径作弧分别交、于两点,再分别以点为圆心,以大于的长为半径作弧交于点,作射线交于点,若,则矩形的面积等于__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在四边形ABCD中,对角线AC与BD相交于点O,,下列判断中错误的是( )
A.如果,,那么四边形ABCD是平行四边形
B.如果,,那么四边形ABCD是矩形
C.如果,,那么四边形ABCD是菱形
D.如果,AC垂直平分BD,那么四边形ABCD是正方形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】据调查,超速行驶是引发交通事故的主要原因之一,所以规定以下情境中的速度不得超过15m/s在一条笔直公路BD的上方A处有一探测仪,如平面几何图,AD=24m,∠D=90°,第一次探测到一辆轿车从B点匀速向D点行驶,测得∠ABD=31°,2秒后到达C点,测得∠ACD=50°(tan31°≈0.6,tan50°≈1.2,结果精确到1m).
(1)求B,C的距离.
(2)通过计算,判断此轿车是否超速.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D竖起标杆DE,使得点E与点C、A共线.
已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:
(1)乙队开挖到30m时,用了_____ h. 开挖6h时甲队比乙队多挖了____ m;
(2)请你求出:
①甲队在的时段内,y与x之间的函数关系式;
②乙队在的时段内,y与x之间的函数关系式;
(3)当x 为何值时,甲、 乙两队在 施工过程中所挖河渠的长度相等?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com