精英家教网 > 初中数学 > 题目详情

【题目】某小区2号楼对外销售,已知2号楼某单元共33层,一楼为商铺,只租不售,二楼以上价格如下:第16层售价为6000/2,从第16层起每上升一层,每平方米的售价提高30元,反之每下降一层,每平方米的售价降低10元,已知该单元每套的面积均为1002

1)请在下表中,补充完整售价y(元/2)与楼层xx取正整数)之间的函数关系式.

楼层x(层)

1

2≤x≤15

16

17≤x≤33

售价y(元/2

不售

   

6000

   

2)某客户想购买该单元第26层的一套楼房,若他一次性付清购房款,可以参加如图优惠活动.请你帮助他分析哪种优惠方案更合算.

【答案】(1)10x+5840,30x+5520;(2)见解析.

【解析】

1)根据题意可以分别写出2≤x≤1517≤x≤33对应的函数解析式,本题得以解决;

2)根据(1)中的函数关系式可以求得第26层的价格,即可写出两种优惠活动的花费,然后利用分类讨论的方法即可解答本题.

解:(1)由题意可得,

2≤x≤15时,y=6000﹣(16x×10=10x+5840

17≤x≤33时,y=6000+x16×30=30x+5520

故答案为:10x+584030x+5520

2)第26层每平方米的价格为:30×26+5520=6300元,

方案一应付款:W1=100×6300×15%)﹣m=598500m

方案二应付款:W2=100×6300×17%=585900

W1W2时,598500m585900,得m12600

W1=W2时,598500m=585900,得m=12600

W1W2时,598500m585900,得m12600

所以当m12600时,方案二合算;

m=12600时,二个方案相同;

m12600时,方案一合算.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线AB和抛物线的交点是A(0,-3)B(59),已知抛物线的顶点D的横坐标是2.

(1)求抛物线的解析式及顶点坐标;

(2)轴上是否存在一点C,与AB组成等腰三角形?若存在,求出点C的坐标,若不存在,请说明理由;

(3)在直线AB的下方抛物线上找一点P,连接PAPB使得△PAB的面积最大,并求出这个最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在于点于点边的中点,连接,则下列结论:①,②,③为等边三角形,④当时,.请将正确结论的序号填在横线上__.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线yax2+bx+3(a≠0)的对称轴为直线x=﹣1,抛物线交x轴于AC两点,与直线yx1交于AB两点,直线AB与抛物线的对称轴交于点E

(1)求抛物线的解板式.

(2)P在直线AB上方的抛物线上运动,若△ABP的面积最大,求此时点P的坐标.

(3)在平面直角坐标系中,以点BECD为顶点的四边形是平行四边形,请直接写出符合条件点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在菱形ABCD中,AB2,∠BAD120°,点EF分别是边ABBC边上的动点,沿EF折叠BEF,使点B的对应点B’始终落在边CD上,则AE两点之间的最大距离为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校为了提高学生学科能力,决定开设以下校本课程:A.文学院;B.小小数学家;C.小小外交家;D、未来科学家.为了了解学生最喜欢哪一项校本课程,学校随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:

1)这次统计共抽查了   名学生;在扇形统计图中,表示C类别的扇形圆心角度数为   

2)补全条形统计图;

3)一班想从表达能力很强的甲、乙、丙、丁四名同学中,任选2名参加小小外交家小组,请用列表或画树状图的方法求恰好同时选中甲、乙两名同学的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=4,AD=3,矩形内部有一动点P满足SPAB=S矩形ABCD,则点PA、B两点的距离之和PA+PB的最小值为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点AB的坐标分别为(-4,5),(-2,1).

(1)写出点C及点C关于y轴对称的点C的坐标;

(2)请作出△ABC关于y轴对称的△ABC′;

(3)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直角△ABC中,∠ABC=90°,BC为圆O的直径,D为圆O与斜边AC的交点,DE为圆O的切线,DEABF,且CE⊥DE.

(1)求证:CA平分∠ECB;

(2)若DE=3,CE=4,求AB的长;

(3)记△BCD的面积为S1,△CDE的面积为S2,若S1:S2=3:2.求sin∠AFD的值.

查看答案和解析>>

同步练习册答案