精英家教网 > 初中数学 > 题目详情

【题目】在菱形ABCD中,AB2,∠BAD120°,点EF分别是边ABBC边上的动点,沿EF折叠BEF,使点B的对应点B’始终落在边CD上,则AE两点之间的最大距离为_____

【答案】2

【解析】

如图,作AHCDH.由BB′关于EF对称,推出BE=EB′,当BE的值最小时,AE的值最大,根据垂线段最短即可解决问题.

如图,作AHCDH

∵四边形ABCD是菱形,∠BAD=120°

ABCD

∴∠D+BAD=180°

∴∠D=60°

AD=AB=2

AH=ADsin60°

BB′关于EF对称,

BE=EB′

BE的值最小时,AE的值最大,

根据垂线段最短可知,当EB时,BE的值最小,

AE的最大值=2

故答案为2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC中,ABAC,把△ABCA点沿顺时针方向旋转得到△ADE,连接BDCE交于点F

1)求证:△AEC≌△ADB;(2)若AB2,∠BAC45°,当四边形ADFC是菱形时,求BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某风景区内有一瀑布,AB表示瀑布的垂直高度,在与瀑布底端同一水平位置的点D处测得瀑布顶端A的仰角β45°,沿坡度i13的斜坡向上走100米,到达观景台C,在C处测得瀑布顶端A的仰角α37°,若点BDE在同一水平线上.(参考数据:sin37°≈0.6cos37°≈0.8tan37°≈0.75≈1.41≈3.16

1)观景台的高度CE   米(结果保留准确值);

2)求瀑布的落差AB(结果保留整数).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,点DE是位于AB两侧的半圆AB上的动点,射线DC切⊙O于点D.连接DEAEDEAB交于点PF是射线DC上一动点,连接FPFB,且∠AED45°

1)求证:CDAB

2)填空:

①若DFAP,当∠DAE_________时,四边形ADFP是菱形;

②若BFDF,当∠DAE_________时,四边形BFDP是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】给出下面四个命题,其中真命题的个数有(

(1)平分弦的直径垂直于这条弦,并且平分这条弦所对的弧;

(2)90°的圆周角所对的弦是直径

(3)在同圆或等圆中,圆心角的度数是圆周角的度数的两倍;

(4)如下图,顺次连接圆的任意两条直径的端点,所得的四边形一定是矩形.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某小区2号楼对外销售,已知2号楼某单元共33层,一楼为商铺,只租不售,二楼以上价格如下:第16层售价为6000/2,从第16层起每上升一层,每平方米的售价提高30元,反之每下降一层,每平方米的售价降低10元,已知该单元每套的面积均为1002

1)请在下表中,补充完整售价y(元/2)与楼层xx取正整数)之间的函数关系式.

楼层x(层)

1

2≤x≤15

16

17≤x≤33

售价y(元/2

不售

   

6000

   

2)某客户想购买该单元第26层的一套楼房,若他一次性付清购房款,可以参加如图优惠活动.请你帮助他分析哪种优惠方案更合算.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,ABDCABAD,对角线ACBD交于点OAC平分BAD,过点CCEABAB的延长线于点E,连接OE

(1)求证:四边形ABCD是菱形;

(2)若ABBD=2,求OE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.

1)不妨设该种品牌玩具的销售单价为x元(x40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:

2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元.

3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y =x+4x轴,y轴分别交于点BC,点Ax轴负半轴上,且OA=OB, 抛物线y =ax2+bx+4经过ABC三点.

1)求抛物线的解析式;

2)点P是第一象限内抛物线上的动点,设点P的横坐标为m,过点PPDBC,垂足为D,用含m的代数式表示线段PD的长,并求出线段PD的最大值;

3)设点E为抛物线对称轴与直线BC的交点,若ABE三点到同一直线的距离分别是d1d2d3,问是否存在直线l,使得d1= d2=d3? 若存在,请直接写出d3的值,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案