【题目】如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.
(1)求出∠BOD的度数;
(2)经测量发现:OE平分∠BOC,请通过计算说明道理.
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD的四个顶点分别在反比例函数与(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P.已知点B的横坐标为4.
(1)当m=4,n=20时.
①若点P的纵坐标为2,求直线AB的函数表达式.
②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.
(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】威远人民商场准备购进甲、乙两种牛奶进行销售,若甲种牛奶的进价比乙种牛奶的进价每件少5元,其用90元购进甲种牛奶的数量与用100元购进乙种牛奶的数量相同.
(1)求甲种牛奶、乙种牛奶的进价分别是多少元?
(2)若该商场购进甲种牛奶的数量是乙种牛奶的3倍少5件,两种牛奶的总数不超过95件,该商场甲种牛奶的销售价格为49元,乙种牛奶的销售价格为每件55元,则购进的甲、乙两种牛奶全部售出后,可使销售的总利润(利润=售价﹣进价)超过371元,请通过计算求出该商场购进甲、乙两种牛奶有哪几种方案?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在菱形ABCD中,AC=2,BD=2,AC、BD相交于点O.
(1)AB的长为 ;
(2)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD的顶点A处,绕点A左右旋转,其中三角板60°角的两边分别与边BC,CD相交于点E,F,连接EF与AC相交于点G.
①求证:△ABE≌△ACF;
②判断△AEF是哪一种特殊三角形,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A,B在长方形的边上.
(1)用圆规和无刻度的直尺在长方形的内部作∠ABC=∠ABO;(保留作图痕迹,不写作法)
(2)在(1)的条件下,若BE是∠CBD的角平分线,探索AB与BE的位置关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,ABCD的周长为36,对角线AC、BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为( )
A. 15 B. 18 C. 21 D. 24
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】试根据图中信息,解答下列问题.
(1)一次性购买6根跳绳需_____元,一次性购买12根跳绳需______元;
(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读以下材料并回答问题:
材料一:已知点 Px0 , y0 和直线 y kx b ,则点Px0 , y0 到直线 y kx b 的距离 d 可以用公式表示为 d . 例如:求点 P 2,1到直线 y x 1的距离.
解:因为直线 y x 1可以变形为 x y 1 0 ,其中 k 1, b 1,则点 P 2,1到直线y x 1的距离可以表示为 d =.
材料二:对于直线 y1 k1 x b1 与直线 y2 k2 x b2 ,若 y1 // y2 ,那么 k1 k2 且b1 b2 ,若 y1 y2 ,那么 k1 k2 1.
(1)点 P1,1到直线 y 2x 1的距离为 ;
(2)已知直线 y1 x 与直线y2 k2 x 1平行,且在平面内存在点到直线 y2 k2 x 1的距离是其到直线 y1 x 距离的两倍,求点所在直线的解析式;
(3)已知直线与直线垂直,其交点为Q,在平面内存在点P(点P不在直线与直线上),过点P分别向直线与直作垂线,垂足分别为M、N,若MQNP是边长为的正方形,求点P点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学八年级举行跳绳比赛,要求每班选出5名学生参加,在规定时间每人跳绳不低于150次为优秀,冠、亚军在八(1)、八(5)两班中产生.下表是这两个班的5名学生的比赛数据(单位:次)
1号 | 2号 | 3号 | 4号 | 5号 | 平均数 | 方差 | |
八(1)班 | 139 | 148 | 150 | 160 | 153 | 150 | 46.8 |
八(5)班 | 150 | 139 | 145 | 147 | 169 | 150 | 103.2 |
根据以上信息,解答下列问题:
(1)求两班的优秀率及两班数据的中位数;
(2)请你从优秀率、中位数和方差三方面进行简要分析,确定获冠军奖的班级.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com