分析 (1)由旋转的性质可知△QPA为等腰直角三角形,利用勾股定理可求得QP的长;
(2)△QPA为等腰直角三角形,故此∠APQ=45°,在△QPC中PC=$\sqrt{7}$,QC=3,QP=$\sqrt{2}$,由勾股定理的逆定理可证△QCP为直角三角形,从而可求得∠APC=135°.
解答 解:(1)∵△APB绕点A旋转与△AQC重合
∴AQ=AP=1,∠QAP=∠CAB=90°.
在Rt△APQ中,由勾股定理得:PQ=$\sqrt{A{Q^2}+A{P^2}}$=$\sqrt{{1^2}+{1^2}}$=$\sqrt{2}$.
(2)∵∠QAP=90°,AQ=AP,
∴∠APQ=45°.
∵△APB绕点A旋转与△AQC重合,
∴CQ=BP=3.
∵在△CPQ中PQ=$\sqrt{2}$,CQ=3,CP=$\sqrt{7}$,
∴CP2+PQ2=($\sqrt{7}$)2+($\sqrt{2}$)2=9,CQ2=32=9.
∴CP2+PQ2=CQ2.
∴∠CPQ=90°.
∴∠APC=∠CPQ+∠APQ=135°.
点评 本题主要考查的是旋转的性质、勾股定理的逆定理的应用,证得△QCP为直角三角形是解题的关键.
科目:初中数学 来源: 题型:选择题
| A. | 10cm | B. | 5cm | C. | 3cm | D. | 7cm |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com