【题目】如图,是的直径,延长至点,过点作的切线,切点为,过点向的延长线作垂线交该延长线于点,交于点,已知,.
求的长;
连结,延长交于,连结.
①求的长;
②求证:是的切线.
【答案】(1);(2)①;②见解析
【解析】
(1)在直角△OPC中,利用勾股定理即可得到圆的半径长,然后利用相似三角形的性质求得BE的长;
(2)①证明△OBD是等边三角形,即可求得DE的长;
②首先证明△OPC≌△OPF,根据切线的判定定理即可证得.
(1)设圆的半径是r,则OP=PA+r=1+r,OC=r,PC=r.
∵PC是圆的切线,∴∠PCO=90°,在直角△PCO中,PC2+OC2=OP2,即(r)2+r2=(1+r)2,解得:r=1或r=﹣(舍去负值).
在直角△OPC中,cos∠POC==,∴∠POC=60°.
∵∠PCO=90°,BE⊥BC,∴BE∥OC,∴△OPC∽△BPE,∠OBD=∠POC=60°,∴==,∴BE=OC=;
(2)①在△OBD中,OB=OD,∠OBD=60°,∴△OBD是等边三角形,BD=OB=1,∠BOD=60°,∴DE=BE﹣BD=﹣1=;
②∵∠POC=60°,∠BOD=60°,∴∠POF=60°,∴∠POC=∠POF.在△OPC和△OPF中,∵,△OPC≌△OPF(SAS),∴∠OFP=∠OCP=90°,∴PF是⊙O的切线.
科目:初中数学 来源: 题型:
【题目】如图,△ABC、△CDE均为等边三角形,连接BD、AE交于点O,BC与AE交于于点P.
(1)求证:△ACE ≌ △BCD.
(2)求∠AOB的度数.
(3)连接OC,求证:OC平分∠AOD
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点,,.
(1)在所给坐标系中作出关于y轴的对称图形;
(2)分别写出点,,的坐标;
(3)在轴上是否存在一点,使的周长最小,若存在,在所给坐标系中作出点(不写作法,保留作图痕迹)并写出点的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直角坐标系中,一次函数的图像分别与,轴交于,两点,正比例函数的图像与交于点.
(1)求的值及的解析式;
(2)求的值;
(3)一次函数的图像为,且,,不能围成三角形,直接写出的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一块长方体木块的各棱长如图所示,一只蜘蛛在木块的一个顶点A处,一只苍蝇在这个长方体上和蜘蛛相对的顶点B处,蜘蛛急于捉住苍蝇,沿着长方体的表面向上爬.
(1)如果D是棱的中点,蜘蛛沿“AD→DB”路线爬行,它从A点爬到B点所走的路程为多少?
(2)若蜘蛛还走前面和右面这两个面,你认为“AD-DB"是最短路线吗?如果不是,请求出最短路程,如果是,请说明理由
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线l与坐标轴相交于点M(3,0),N(0,﹣4),反比例函数y=(x>0)的图象经过Rt△MON的外心A.
(1)求直线l的解析式;
(2)直接写出点A坐标及k值;
(3)在函数y=(x>0)的图象上取异于点A的一点B,作BC⊥x轴于点C,连接OB交直线l于点P,若△OMP的面积与△OBC的面积相等,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线AB与x轴交于点A(4,0)、与y轴交于点B(0,3),直线 BD与x轴交于点D,将直线AB沿直线BD翻折,点A恰好落在y轴上的C点,则直线BD对应的函数关系式为______ .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,AB=BD,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H.给出如下几个结论:
①∠ADE=∠DBF;②△DAE≌△BDG;③若AF=2DF,则BG=6GF;④CG与BD一定不垂直;⑤∠BGE=60°.其中正确的结论个数为( )
A. 5 B. 4 C. 3 D. 2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com