【题目】如图,△ABC、△CDE均为等边三角形,连接BD、AE交于点O,BC与AE交于于点P.
(1)求证:△ACE ≌ △BCD.
(2)求∠AOB的度数.
(3)连接OC,求证:OC平分∠AOD
【答案】(1)证明见解析;(2);(3)证明见解析.
【解析】
(1)利用等边三角形的性质证明;
(2)由得到∠CBD=∠CAE.再利用三角形内角和等于180°,由△APC和△BPO中有内角互为对顶角进而得出∠BOA=∠ACP=60°.
(3)过C点作CG⊥AE,CH⊥BD,由三角形全等可得其对应高相等.再根据到角两边距离相等的点在角平分线即可得出结论.
(1)证明:与都是等边三角形,
,,,
∴,
即.
在和中,
,
(SAS).
(2).
∴∠CBD=∠CAE,
∵∠BPO =∠APC,
又∵∠CBD+∠BPO+∠BOP=∠CAE+∠APC+∠ACP=180°.
∴∠BOP=∠ACP=60°,即∠AOB=60°.
(3)如图,过C点作CG⊥AE,CH⊥BD,
,
∴,AE=BD,
∴,
∴CG=CH,
又∵CG⊥AE,CH⊥BD,
∴OC是∠AOD的角平分线,即OC平分∠AOD.
科目:初中数学 来源: 题型:
【题目】如图,直线y=2x+3与x轴相交于点A,与y轴相交于点B.
(1)求A,B两点的坐标;
(2)过B点作直线BP与x轴相交于P,且使OP=2OA, 求ΔABP的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法正确的是( )
A. 一定是一次函数
B. 有的实数在数轴上找不到对应的点
C. 长为的三条线段能组成直角三角形
D. 无论为何值,点总是在第二象限
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:线段AB,BC,.
求作:矩形ABCD.
老师说甲、乙同学的作图都正确. 请你选择其中一位同学的作业说明其作图依据.
我选择____同学,他的作图依据是:___________________________________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴交于、两点,直线与轴交于点,与轴交于点.点是抛物线上一动点,过点作直线轴于点,交直线于点.设点的横坐标为.
求抛物线的解析式;
若点在轴上方的抛物线上,当时,求点的坐标;
若点’是点关于直线的对称点,当点’落在轴上时,请直接写出的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一辆摩拜单车放在水平的地面上,车把头下方A处与坐垫下方B处在平行于地面的水平线上,A、B之间的距离约为49cm,现测得AC、BC与AB的夹角分别为45°与68°,若点C到地面的距离CD为28cm,坐垫中轴E处与点B的距离BE为4cm,求点E到地面的距离(结果保留一位小数).(参考数据:sin68°≈0.93,cos68°≈0.37,cot68°≈0.40)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法中:①长度相等的弧是等弧;②平分弦的直径垂直于弦;③直径是弦;④同弧或等弧所对的圆心角相等;⑤在同圆或等圆中,相等的弦所对弧相等;错误的个数为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是的直径,延长至点,过点作的切线,切点为,过点向的延长线作垂线交该延长线于点,交于点,已知,.
求的长;
连结,延长交于,连结.
①求的长;
②求证:是的切线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】农经公司以30元/千克的价格收购一批农产品进行销售,为了得到日销售量p(千克)与销售价格x(元/千克)之间的关系,经过市场调查获得部分数据如下表:
销售价格x(元/千克) | 30 | 35 | 40 | 45 | 50 |
日销售量p(千克) | 600 | 450 | 300 | 150 | 0 |
(1)请你根据表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定p与x之间的函数表达式;
(2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大?
(3)若农经公司每销售1千克这种农产品需支出a元(a>0)的相关费用,当40≤x≤45时,农经公司的日获利的最大值为2430元,求a的值.(日获利=日销售利润﹣日支出费用)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com