精英家教网 > 初中数学 > 题目详情
9.运动会前夕,爸爸陪小明在400m的环形跑道上训练,他们在同一地点沿着同一方向同时出发.

(1)请根据他们的对话内容,求出小明和爸爸的速度;
(2)爸爸追上小明后,在第二次相遇前,再经过0.5或3.5分钟,小明和爸爸在跑道上相距50m.

分析 (1)设爸爸的速度为x m/min,则小明的速度为$\frac{3}{4}x$m/min,根据爸爸的话列出方程并解答;
(2)分两种情况:小明在爸爸的前方和后方,根据时间=路程差÷速度差列出算式求解即可.

解答 解:(1)设爸爸的速度为xm/min,则小明的速度为$\frac{3}{4}x$m/min,
根据题意得:$4(x-\frac{3}{4}x)=400$,
解得:x=400,
$\frac{3}{4}x$=$400×\frac{3}{4}=300$.
答:小明的速度为300m/min,爸爸的速度为400m/mim;

(2)50÷(400-300)
=50÷100
=0.5(分钟);
(400-50)÷(400-300)
=350÷100
=3.5(分钟)‘
答:再经过0.5或3.5分钟,小明和爸爸在跑道上相距50m.
故答案为:0.5或3.5.

点评 考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,由路程差找出合适的等量关系列出方程,再求解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.解方程:
(1)5x-3=4x+15
(2)$\frac{x-1}{2}=5-\frac{2x-1}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知:如图AD⊥BC于点D,EF⊥BC于点F,交AB于点G,交CA的延长线于点E,∠1=∠2,求证:AD平分∠BAC.
填写分析和证明中的空白.
分析:要证明AD平分∠BAC,只要证明∠BAD=∠ADC而已知∠1=∠2,所以应联想这两个角分别和∠1、∠2得到关系,由已知BC的两条垂线可推出EF∥AD,这时再观察这两对角的关系已不难得到结论.
证明:
∵AD⊥BC,EF⊥BC(已知)
∴EF∥AD(同位角相等,两直线平行)
∴∠1=∠BAD(两直线平行,内错角相等)
∠2=∠CAD(两直线平行,同位角角相等)
∵∠1=∠2(已知)
∴∠BAD=∠ADC(等量代换)
∴AD平分∠BAC(角平分线的定义)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图所示,已知AB∥CD,直线l分别交AB、CD于点E、F,EG平分∠BEF,若∠EFG=35°28′,则∠EGF=72°16′.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4..阅读下面材料:
在数学课上,老师提出如下问题:

小芸的作法如图:

请你回答:
(1)作图第一步为什么要大于$\frac{1}{2}$AB的长?
(2)小芸的作图是否正确?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,防洪大堤的横断面是梯形ABCD,其中AD∥BC,坡角α=60°,汛期来临前对其进行了加固,改造后的坡长为AE,背水面坡角β=45°.若原坡长AB=16m,求改造后的坡长AE(结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.阅读下面材料:
在学习《圆》这一章时,老师给同学们布置了一道尺规作图题:
尺规作图:过圆外一点作圆的切线.
已知:P为⊙O外一点.
求作:经过点P的⊙O的切线.
小敏的作法如下:
如图,
(1)连接OP,作线段OP的垂直平分线MN交OP于点C;
(2)以点C为圆心,CO的长为半径作圆,交⊙O于A,B两点;
(3)作直线PA,PB.所以直线PA,PB就是所求作的切线.
老师认为小敏的作法正确.
请回答:连接OA,OB后,可证∠OAP=∠OBP=90°,其依据是直径所对的圆周角是90°;由此可证明直线PA,PB都是⊙O的切线,其依据是经过半径外端,且与半径垂直的直线是圆的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE∥BD,过点D作ED∥AC,两线相交于点E.
(1)求证:四边形AODE是菱形;
(2)连接BE,交AC于点F.若BE⊥ED于点E,求∠AOD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.两条直线相交可以形成2对对顶角,那么同一平面内4条直线最多可以形成对顶角(  )
A.8对B.10对C.12对D.16对

查看答案和解析>>

同步练习册答案