精英家教网 > 初中数学 > 题目详情

【题目】抛掷一枚均匀的骰子(各面上的点数分别为1﹣6点)1次,落地后:

(1)朝上的点数有哪些结果?他们发生的可能性一样吗?

(2)朝上的点数是奇数与朝上的点数是偶数,这两个事件的发生可能性大小相等吗?

(3)朝上的点数大于4与朝上的点数不大于4,这两个事件的发生可能性大小相等吗?如果不相等,那么哪一个可能性大一些?

【答案】(1)它们的可能性相同;(2)发生的可能性大小相同;(3)朝上的点数大于4与朝上的点数不大于4可能性大小不相等,朝上的点数不大于4发生的可能性大

【解析】

(1)根据实验可能出现情况分析;(2)列出所有可能,计算概率;(3)根据具体情况计算概率.

解:(1)因为抛掷一枚均匀的骰子(各面上的点数分别为1﹣6点)1次,落地后朝上的点数可能是1、2、3、4、5、6,

所以它们的可能性相同;

(2)因为朝上的点数是奇数的有1,3,5,它们发生的可能性是,朝上的点数是奇数的有2,4,6,它们发生的可能性是

所以发生的可能性大小相同;

(3)因为朝上的点数大于4的数有5,6,发生可能性是=

朝上的点数不大于4的数有1,2,3,4,发生可能性是=

所以朝上的点数大于4与朝上的点数不大于4可能性大小不相等,朝上的点数不大于4发生的可能性大.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知,在RtABC中,∠C=90°,AC=15,BC=8,DAB的中点,E点在边AC上,将△BDE沿DE折叠得到△B1DE,若△B1DE与△ADE重叠部分面积为△ADE面积的一半,则CE=_____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图1,计算下列五角星图案中五个顶角的度数和. 即:求∠A+B+C+D+E的大小.

2)如图2,若五角星的五个顶角的度数相等, 求∠1的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小南发现操场中有一个不规则的封闭图形ABC.为了知道它的面积,他在封闭图形内画出了一个半径为1米的圆,在不远处向圈内掷石子,若石子落在图形ABC以外,则重掷.记录如下:

石子落在圆内(含圆上)的次数

14

43

93

150

石子落在阴影内的次数

23

91

186

300

根据以上的数据,小南得到了封闭图形ABC的面积.

请根据以上信息,回答以下问题:

(1)求石子落在圆内(含圆上)的频率;

(2)估计封闭图形ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)某校招聘教师一名,现有甲、乙、丙三人通过专业知识、讲课、答辩三项测试,他们各自的成绩如下表所示:

应聘者

专业知识

讲课

答辩

70

85

80

90

85

75

80

90

85

按照招聘简章要求,对专业知识、讲课、答辩三项赋权5:4:1.请计算三名应聘者的平均成绩,从成绩看,应该录取谁?

(2)我市举行了某学科实验操作考试,有A、B、C、D四个实验,规定每位学生只参加其中一个实验的考试,并由学生自己抽签决定具体的考试实验.小王,小张,小厉都参加了本次考试.

①小厉参加实验D考试的概率是   

②用列表或画树状图的方法求小王、小张抽到同一个实验的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的位居民,得到这位居民一周内使用共享单车的次数分别为:

(1)这组数据的中位数是________,众数是________;

(2)计算这位居民一周内使用共享单车的平均次数;

(3)若该小区有名居民,试估计该小区居民一周内使用共享单车的总次数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制成下面两幅不完整的统计图,请你根据图中提供的信息解答下列问题:

(1)在这次调查中,一共调查了   名学生;

(2)补全条形统计图;

(3)若该校共有1500名学生,估计爱好运动的学生有   人;

(4)在全校同学中随机选取一名学生参加演讲比赛,用频率估计概率,则选出的恰好是爱好阅读的学生的概率是   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,P是抛物线y=-x2+3x上一点,且在x轴上方,过点P分别向x轴、y轴作垂线,得到矩形PMON.若矩形PMON的周长随点P的横坐标m增大而增大,则m的取值范围是_________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我国古代数学的许多发现都曾位居世界前列,如杨辉三角就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(a+bnn为正整数)的展开式(按a的次数降幂排列)的系数规律例如,在三角形中第一行的三个数121,恰好对应(a+b2a2+2ab+b2展开式中的系数;第四行的四个数1331,恰好对应着(a+b3a3+3ab+3ab2+b3展开式中的系数.结合对杨辉三角的理解完成以下问题

1)(a+b2展开式a2+2ab+b2中每一项的次数都是   次;

a+b3展开式a3+3a2b+3ab2+b3中每一项的次数都是   次;

那么(a+bn展开式中每一项的次数都是   次.

2)写出(a+14的展开式   

3)拓展应用:计算(x+15+x16+x+17的结果中,x5项的系数为   

查看答案和解析>>

同步练习册答案