【题目】抛掷一枚均匀的骰子(各面上的点数分别为1﹣6点)1次,落地后:
(1)朝上的点数有哪些结果?他们发生的可能性一样吗?
(2)朝上的点数是奇数与朝上的点数是偶数,这两个事件的发生可能性大小相等吗?
(3)朝上的点数大于4与朝上的点数不大于4,这两个事件的发生可能性大小相等吗?如果不相等,那么哪一个可能性大一些?
【答案】(1)它们的可能性相同;(2)发生的可能性大小相同;(3)朝上的点数大于4与朝上的点数不大于4可能性大小不相等,朝上的点数不大于4发生的可能性大
【解析】
(1)根据实验可能出现情况分析;(2)列出所有可能,计算概率;(3)根据具体情况计算概率.
解:(1)因为抛掷一枚均匀的骰子(各面上的点数分别为1﹣6点)1次,落地后朝上的点数可能是1、2、3、4、5、6,
所以它们的可能性相同;
(2)因为朝上的点数是奇数的有1,3,5,它们发生的可能性是,朝上的点数是奇数的有2,4,6,它们发生的可能性是
所以发生的可能性大小相同;
(3)因为朝上的点数大于4的数有5,6,发生可能性是=,
朝上的点数不大于4的数有1,2,3,4,发生可能性是=,
所以朝上的点数大于4与朝上的点数不大于4可能性大小不相等,朝上的点数不大于4发生的可能性大.
科目:初中数学 来源: 题型:
【题目】已知,在Rt△ABC中,∠C=90°,AC=15,BC=8,D为AB的中点,E点在边AC上,将△BDE沿DE折叠得到△B1DE,若△B1DE与△ADE重叠部分面积为△ADE面积的一半,则CE=_____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,计算下列五角星图案中五个顶角的度数和. 即:求∠A+∠B+∠C+∠D+∠E的大小.
(2)如图2,若五角星的五个顶角的度数相等, 求∠1的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小南发现操场中有一个不规则的封闭图形ABC.为了知道它的面积,他在封闭图形内画出了一个半径为1米的圆,在不远处向圈内掷石子,若石子落在图形ABC以外,则重掷.记录如下:
石子落在圆内(含圆上)的次数 | 14 | 43 | 93 | 150 |
石子落在阴影内的次数 | 23 | 91 | 186 | 300 |
根据以上的数据,小南得到了封闭图形ABC的面积.
请根据以上信息,回答以下问题:
(1)求石子落在圆内(含圆上)的频率;
(2)估计封闭图形ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)某校招聘教师一名,现有甲、乙、丙三人通过专业知识、讲课、答辩三项测试,他们各自的成绩如下表所示:
应聘者 | 专业知识 | 讲课 | 答辩 |
甲 | 70 | 85 | 80 |
乙 | 90 | 85 | 75 |
丙 | 80 | 90 | 85 |
按照招聘简章要求,对专业知识、讲课、答辩三项赋权5:4:1.请计算三名应聘者的平均成绩,从成绩看,应该录取谁?
(2)我市举行了某学科实验操作考试,有A、B、C、D四个实验,规定每位学生只参加其中一个实验的考试,并由学生自己抽签决定具体的考试实验.小王,小张,小厉都参加了本次考试.
①小厉参加实验D考试的概率是 ;
②用列表或画树状图的方法求小王、小张抽到同一个实验的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的位居民,得到这位居民一周内使用共享单车的次数分别为:,,,,,,,,,.
(1)这组数据的中位数是________,众数是________;
(2)计算这位居民一周内使用共享单车的平均次数;
(3)若该小区有名居民,试估计该小区居民一周内使用共享单车的总次数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制成下面两幅不完整的统计图,请你根据图中提供的信息解答下列问题:
(1)在这次调查中,一共调查了 名学生;
(2)补全条形统计图;
(3)若该校共有1500名学生,估计爱好运动的学生有 人;
(4)在全校同学中随机选取一名学生参加演讲比赛,用频率估计概率,则选出的恰好是爱好阅读的学生的概率是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,P是抛物线y=-x2+3x上一点,且在x轴上方,过点P分别向x轴、y轴作垂线,得到矩形PMON.若矩形PMON的周长随点P的横坐标m增大而增大,则m的取值范围是_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我国古代数学的许多发现都曾位居世界前列,如杨辉三角就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(a+b)n(n为正整数)的展开式(按a的次数降幂排列)的系数规律例如,在三角形中第一行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3ab+3ab2+b3展开式中的系数.结合对杨辉三角的理解完成以下问题
(1)(a+b)2展开式a2+2ab+b2中每一项的次数都是 次;
(a+b)3展开式a3+3a2b+3ab2+b3中每一项的次数都是 次;
那么(a+b)n展开式中每一项的次数都是 次.
(2)写出(a+1)4的展开式 .
(3)拓展应用:计算(x+1)5+(x﹣1)6+(x+1)7的结果中,x5项的系数为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com