精英家教网 > 初中数学 > 题目详情

【题目】随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的位居民,得到这位居民一周内使用共享单车的次数分别为:

(1)这组数据的中位数是________,众数是________;

(2)计算这位居民一周内使用共享单车的平均次数;

(3)若该小区有名居民,试估计该小区居民一周内使用共享单车的总次数.

【答案】(1)16,17;(2)这10位居民一周内使用共享单车的平均次数是14次;(3)该小区居民一周内使用共享单车的总次数为2800次.

【解析】

(1)根据中位数和众数的定义求解;(2)根据平均数公式求解;(3)用(2)结果估算总体情况.

解:(1)按照大小顺序重新排列后,第5、第6个数分别是15和17,所以中位数是(15+17)÷2=16,17出现3次最多,所以众数是17,

故答案是16,17;

(2)=14,

答:这10位居民一周内使用共享单车的平均次数是14次;

(3)200×14=2800

答:该小区居民一周内使用共享单车的总次数为2800次.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在一个坡角为30°的斜坡上有一电线杆AB,当太阳光与水平线成45°角时,测得该杆在斜坡上的影长BC20m.求电线杆AB的高(精确到0.1m,参考数值:≈1.73,≈1.41).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点经过某种变换后得到点,我们把点叫做点的终结点.已知点的终结点为,点的终结点为,点的终结点为,这样依次得到,若点的坐标为,则点的坐标为( )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC是等边三角形,BC2.P从点A出发沿沿射线AB1的速度运动,过点PPEBC交射线AC于点E,同时点Q从点C出发沿BC的延长线以1的速度运动,连结BEEQ.设点P的运动时间为t.

1)求证:APE是等边三角形;

2)直接写出CE的长(用含的代数式表示);

3)当点P在边AB上,且不与点AB重合时,求证:BPE≌△ECQ.

4)在不添加字母和连结其它线段的条件下,当图中等腰三角形的个数大于3时,直接写出t的值和对应的等腰三角形的个数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛掷一枚均匀的骰子(各面上的点数分别为1﹣6点)1次,落地后:

(1)朝上的点数有哪些结果?他们发生的可能性一样吗?

(2)朝上的点数是奇数与朝上的点数是偶数,这两个事件的发生可能性大小相等吗?

(3)朝上的点数大于4与朝上的点数不大于4,这两个事件的发生可能性大小相等吗?如果不相等,那么哪一个可能性大一些?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边三角形AOB,点Cx正半轴上一动点(OC>1),连接BC,以线段BC为边在第四象限内作等边CBD,连接DA并延长,交y轴于点E.

①△OBCABD全等吗?判断并证明你的结论;

②当点C运动到什么位置时,以A,E,C为顶点的三角形是等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD中,∠ABC为锐角,ABBC,点EAD上的一点,延长CEF,连接BFAD于点G使∠FBCDCE

求证:∠DF

在直线AD找一点P,使以点BPC为顶点的三角形与以点CDP为顶点的三角形相似.(在原图中标出准确P点的位置,必要时用直尺和圆规作出P点,保留作图的痕迹,不写作法)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=ax2+bx+4的图象与x轴交于点B-20),点C80),与y轴交于点A

1)求二次函数y=ax2+bx+4的表达式;

2)连接ACAB,若点N在线段BC上运动(不与点BC重合),过点NNM∥AC,交AB于点M,当△AMN面积最大时,求N点的坐标;

3)连接OM,在(2)的结论下,求OMAC的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P、Q分别从点A、B同时开始移动,点P的速度为1 cm/秒,点Q的速度为2 cm/秒,点Q移动到点C后停止,点P也随之停止运动下列时间瞬间中,能使△PBQ的面积为15cm 的是(

A. 2秒钟 B. 3秒钟 C. 4秒钟 D. 5秒钟

查看答案和解析>>

同步练习册答案