【题目】如图1,点是线段的中点,分别以和为边在线段的同侧作等边三角形和等边三角形,连结和,相交于点,连结,
(1)求证:;
(2)求的大小;
(3)如图2,固定不动,保持的形状和大小不变,将绕着点旋转(和不能重叠),求的大小.
【答案】(1)证明见解析;(2)∠AEB=60°;(3)∠AEB=60°.
【解析】
(1)由等边三角形的性质可得,,继而可得∠AOC=∠DOB,利用SAS证明,利用全等三角形的性质即可得;;
(2)先证明,从而可得 ∠ODB=∠DBO,再利用三角形外角的性质可求得,,进而根据即可求得答案;
(3)证明,从而可得,再由,可得,设与交于点,利用三角形内角和定理以及对顶角的性质即可求得.
(1)∵和均为等边三角形,
∴,,
∴,
即∠AOC=∠DOB,
∴(SAS)
∴;
(2)∵O为AD中点,
∴DO=AO,
∵OA=OB,
∴,
∴∠ODB=∠DBO,
∵∠ODB+∠DBO=∠AOB=60°,
∴
同理,,
∴;
(3)∵,
∴,
∴,
又∵CO=DO,AO=BO,AO=DO,
∴OC=OB,
∴(SAS),
∴,
∵,
∴,
∴,
设与交于点,
∵,,
又,
∴.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AC的垂直平分线交BC于D,交AC于E,AE=3cm, △ABD的周长为13cm,那么△ABC的周长为_______________cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形ABCD中,AB=3cm,BC=5cm;,BE平分∠ABC,交AD于点E,交CD延长线于点F,则DE+DF的长度为_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.
(1)观察猜想
图1中,线段PM与PN的数量关系是 ,位置关系是 ;
(2)探究证明
把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;
(3)拓展延伸
把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】今年3月,某集团随机抽取所属的m家商业连锁店进行评估,将各连锁店按照评估成绩分成了A、B、C、D四个等级,绘制了如图尚不完整的统计图表.
评估成绩分 | 评定等级 | 频数 |
A | 2 | |
B | b | |
C | 15 | |
D | 6 |
根据以上信息解答下列问题:
(1)求m,b的值;
(2)在扇形统计图中,求B等级所在扇形的圆心角的大小;
(3)从评估成绩不少于80分的连锁店中,任选2家介绍营销经验,用树状图或列表法求其中至少有一家是A等级的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点C是直线AB,DE之间的一点,∠ACD=90°,下列条件能使得AB∥DE的是( )
A. ∠α+∠β=180° B. ∠β﹣∠α=90° C. ∠β=3∠α D. ∠α+∠β=90°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),,,垂足分别为、,.点在线段上以的速度由点向点运动,同时点在射线上运动.它们运动的时间为(当点运动结束时,点运动随之结束).
(1)若点的运动速度与点的运动速度相等,当时,与是否全等,并判断此时线段和线段的位置关系,请分别说明理由;
(2)如图(2),若“,”改为“”,点的运动速度为,其它条件不变,当点、运动到何处时有与全等,求出相应的的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于二次函数y=ax2+bx+c的图象有下列命题,其中是假命题的个数是( )
①当c=0时,函数的图象经过原点;
②当b=0时,函数的图象关于y轴对称;
③函数的图象最高点的纵坐标是;
④当c>0且函数的图象开口向下时,方程ax2+bx+c=0必有两个不相等的实根.
A. 0个 B. 1个 C. 2个 D. 3个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(10分)在Rt△ABC中,∠BAC=,D是BC的中点,E是AD的中点.过点A作AF∥BC交BE的延长线于点F.
(1)求证:△AEF≌△DEB;
(2)证明四边形ADCF是菱形;
(3)若AC=4,AB=5,求菱形ADCFD 的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com