分析 在直角三角形中,利用勾股定理得到AB2-AC2+(AM2-MP2)=BC2+(MC2-MP2)①,AM2-MP2=AP2②,MC2+BC2-MP2=BM2-MP2=BP2③.把②③代入①证得结论.
解答 证明:∵△ABC是直角三角形,∠C=90°,
∴AB2=BC2+AC2,则AB2-AC2=BC2.
又∵在直角△AMP中,AP2=AM2-MP2,
∴AB2-AC2+(AM2-MP2)=BC2+(AM2-MP2).
又∵AM=CM,
∴AB2-AC2+(AM2-MP2)=BC2+(MC2-MP2),①
∵△APM是直角三角形,∴AM2=AP2+MP2,则AM2-MP2=AP2,②
∵△BPM与△BCM都是直角三角形,
∴BM2=BP2+MP2=MC2+BC2,
MC2+BC2-MP2=BM2-MP2=BP2,③
把②③代入①,得
AB2-AC2+AP2=BP2,即BP2=AP2+BC2.
点评 本题考查了勾股定理.正确利用等量代换是解题的难点.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\frac{{\sqrt{5}}}{5}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{3}{4}$ | B. | $\frac{3}{5}$ | C. | $\frac{4}{3}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com