【题目】在平面直角坐标系中,已知点A(a,0),B(b,3),C(4,0),且满足+(a﹣b+6)2=0,线段AB交y轴于点F,点D是y轴正半轴上的一点.
(1)求出点A,B的坐标;
(2)如图2,若DB∥AC,∠BAC=a,且AM,DM分别平分∠CAB,∠ODB,求∠AMD的度数;(用含a的代数式表示).
(3)如图3,坐标轴上是否存在一点P,使得△ABP的面积和△ABC的面积相等?若存在,求出P点坐标;若不存在,请说明理由.
【答案】(1)A(﹣3,0),B(3,3);(2)∠AMD=45°+a;(3)存在.
【解析】
(1)根据非负数的性质得到关于a,b的二元一次方程组,然后求解即可;
(2)过点M作MN∥DB,交y轴于点N,根据平行线的性质易证∠AMD=∠AMN+∠DMN,再根据角平分线的定义整理即可得解;
(3)存在,设F(0,t),根据S△AOF+S△BOF=S△AOB,求得F的坐标,再分P点在y轴上,与x轴上两种情况进行讨论即可.
解:(1)∵+(a﹣b+6)2=0,
∴a+b=0,a﹣b+6=0,
∴a=﹣3,b=3,
∴A(﹣3,0),B(3,3);
(2)如图2,过点M作MN∥DB,交y轴于点N,
∴∠DMN=∠BDM,
又∵DB∥AC,
∴MN∥AC,
∴∠AMN=∠MAC,
∵DB∥AC,∠DOC=90°,
∴∠BDO=90°,
又∵AM,DM分别平分∠CAB,∠ODB,∠BAC=a,
∴∠MAC=a,∠BDM=45°,
∴∠AMN=a,∠DMN=45°,
∴∠AMD=∠AMN+∠DMN=45°+a;
(3)存在.
连结OB,如图3,
设F(0,t),
∵S△AOF+S△BOF=S△AOB,
∴3t+t3=×3×3,解得t=,
∴F点坐标为(0,),
△ABC的面积=×7×3=,
当P点在y轴上时,设P(0,y),
∵S△ABP=S△APF+S△BPF,
∴|y﹣|3+|y﹣|3=,
解得y=5或y=﹣2,
∴此时P点坐标为(0,5)或(0,﹣2);
当P点在x轴上时,设P(x,0),
则|x+3|3=,
解得x=﹣10或x=4,
∴此时P点坐标为(﹣10,0),
综上可知存在满足条件的点P,其坐标为(0,5)或(0,﹣2)或(﹣10,0).
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,半径为1的圆从原点出发沿x轴正方向滚动一周,圆上一点由原点O到达点O′,圆心也从点A到达点A′.
(1)点O′的坐标为 ,点A′的坐标为 ;
(2)若点P是圆在滚动过程中圆心经过的某一位置,求以点P,点O,点O′为顶点的三角形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD中,E为对角线BD的延长线上一点.
(1)求证:AE=CE.
(2)若BC=6,AE=10,∠BAE=120,求BE的长,并直接写出DE的长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在给定的一张平行四边形纸片上按如下操作:连结AC,作AC的垂直平分线MN分别交AD、AC、BC于M、O、N,连结AN,CM,则四边形ANCM是( )
A. 矩形 B. 菱形 C. 正方形 D. 无法判断
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解:我们把称为二阶行列式,规定它的运算法则为=ad﹣bc,例如:=2×5﹣3×4=﹣2.
(1)填空:若=0,则x= ,>0,则x的取值范围 ;
(2)若对于正整数m,n满足,1<3,求m+n的值;
(3)若对于两个非负数x,y,==k﹣1,求实数k的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料:
关于的方程:
的解为: ,
(可变形为)的解为: ,
的解为: ,
的解为: ,
…………
根据以上材料解答下列问题:
(1)①方程的解为 .
②方程的解为 .
(2)解关于方程:
① ()
②()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.
(1)已知:如图1,四边形ABCD的顶点A,B,C在网格格点上,请你在如下的57的网格中画出3个不同形状的等邻边四边形ABCD,要求顶点D在网格格点上;
(2)如图2,矩形ABCD中,AB=,BC=5,点E在BC边上,连结DE画AFDE于点F,若DE=CD,找出图中的等邻边四边形;
(3)如图3,在RtABC中,ACB=90°,AB=4,AC=2,D是BC的中点,点M是AB边上一点,当四边形ACDM是“等邻边四边形”时,求BM的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数的图象与反比例函数的图象相交于A、B两点.
(1)利用图中的条件,求反比例函数和一次函数的解析式;
(2)根据图象直接写出一次函数的值大于反比例函数的x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在下面的解题过程的横线上填空,并在括号内注明理由
.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.
解:∵∠A=∠F(已知)
∴AC∥DF( )
∴∠D=∠ ( )
又∵∠C=∠D(已知)
∴∠1=∠C(等量代换)
∴BD∥CE( )
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com