【题目】如图,一次函数的图象与反比例函数的图象相交于A、B两点.
(1)利用图中的条件,求反比例函数和一次函数的解析式;
(2)根据图象直接写出一次函数的值大于反比例函数的x的取值范围.
【答案】(1),y=2x-2;(2)x>2或-1<x<0.
【解析】试题解析:(1)先设出批比例函数解析式为,再将B(-1,-4)代入求出k的值,再将A(2,m)代入反比例函数解析式得m的值,再将已知两点A、B的坐标代入一次函数y1=kx+b可求k、b的值,从而可确定两函数解析式;
(2)根据两函数图象的交点横坐标,图象的位置关系,确定一次函数的值大于反比例函数的值时,自变量x的取值范围.
解:(1)设反比例函数解析式为, 将B(-1,-4)代入得k=4,
∴反比例函数解析式为,
将A(2,m)代入得:m=2,
∴A(2,2)
设一次函数解析式为:y=ax+b,则有
解得:
∴一次函数的解析式为y=2x-2.
(2)根据图象得:当x>2或-1<x<0时, 一次函数的值大于反比例函数的值.
科目:初中数学 来源: 题型:
【题目】(1)用“=”、“>”、“<”填空
; 6+3 ; ;7+7 ;
(2)由(1)中各式猜想a+b与的大小,并说明理由.
(3)请利用上述结论解决下面问题:
某同学在做一个面积为1800cm2,对角线互相垂直的四边形风筝时,求用来做对角线的竹条至少要多少厘米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知点A(a,0),B(b,3),C(4,0),且满足+(a﹣b+6)2=0,线段AB交y轴于点F,点D是y轴正半轴上的一点.
(1)求出点A,B的坐标;
(2)如图2,若DB∥AC,∠BAC=a,且AM,DM分别平分∠CAB,∠ODB,求∠AMD的度数;(用含a的代数式表示).
(3)如图3,坐标轴上是否存在一点P,使得△ABP的面积和△ABC的面积相等?若存在,求出P点坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,有一块直角三角形纸片,AC=6,BC=8,现将△ABC沿直线AD折叠,使AC落在斜边AB上,且C与点E重合,则AD的长为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE//AC,且DE:AC=1:2,连接CE、OE,连接AE交OD于点F.
(1)求证:OE=CD;
(2)若菱形ABCD的边长为2,∠ABC=60°,求AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点A(2,0),B(0,4),若以B,O,C为顶点的三角形与△ABO全等,则点C的坐标不能为( )
A.(0,﹣4)B.(﹣2,0)C.(2,4)D.(﹣2,4)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图所示,在△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.
(1)如果P,Q分别从A,B同时出发,那么几秒后,△PBQ的面积等于4cm2?
(2)如果P,Q分别从A,B同时出发,那么几秒后,△PBQ中PQ的长度等于5cm?
(3)在(1)中,当P,Q出发几秒时,△PBQ有最大面积?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,AB=6cm,∠B=∠C,BC=4cm,点D为AB的中点.若点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.
(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;
(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】全面两孩政策实施后,甲,乙两个家庭有了各自的规划.假定生男生女的概率相同,回答下列问题:
(1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是 ;
(2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com