精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系xOy中,点A-2-3),B10),C34),若以ABCD为顶点的四边形是平行四边形,则点D的坐标为__________________.

【答案】故答案是:(-1,2)或(7,6)或(-5,-6)

【解析】

以AB和BC为边、CA和BA为边、AC和CB为边,三种情况进行讨论.

如图:以AB和BC为边的平行四边形,根据平移的性质知:,易求得顶点D的坐标为(-1,2);

如图:以CA和BA为边的平行四边形,根据平移的性质知:,易求得顶点D的坐标为(7,6);

如图:以CA和CB为边的平行四边形,根据平移的性质知:,易求得顶点D的坐标为(-5,-6)

故答案是:(-1,2)或(7,6)或(-5,-6)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在圆内接四边形中,,则四边形的面积为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1:在四边形ABCD中,ABADBAD120°BADC90°EF分别是BCCD上的点.且∠EAF60°.探究图中线段BEEFFD之间的数量关系.

小王同学探究此问题的方法是,延长FD到点G,使DGBE.连结AG先证明ABE≌△ADG,再证明AEF≌△AGF,可得出结论,他的结论应是   

探索延伸:

如图2,若在四边形ABCD中,ABADBD180°EF分别是BCCD上的点,且∠EAFBAD,上述结论是否仍然成立,并说明理由;

实际应用:

如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°A处,舰艇乙在指挥中心南偏东70°B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进1.5小时后,指挥中心观测到甲、乙两舰艇分别到达EF处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一水果店主分两批购进某一种水果,第一批所用资金为2400元,因天气原因,水果涨价,第二批所用资金是2700元,但由于第二批单价比第一批单价每箱多10元,以致购买的数量比第一批少25%

1)该水果店主购进第一批这种水果的单价是多少元?

2)该水果店主计两批水果的售价均定为每箱40元,实际销售时按计划无损耗售完第一批后,发现第二批水果品质不如第一批,于是该店主将售价下降a%销售,结果还是出现了20%的损耗,但这两批水果销售完后仍赚了不低于1716元,求a的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(题文)(1)阅读理解:

如图1,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.

解决此问题可以用如下方法:延长AD到点E使DE=AD,连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD,把AB,AC,2AD集中在△ABE中.利用三角形三边的关系即可判断中线AD的取值范围是_________;

(2)问题解决:

如图2,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证BE+CF>EF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】文学社为解本校学生对本社一种报纸四个版面的喜欢情况,随机抽取部分学生做了一次问卷调查,要求学生选出自己喜欢的个版面,将调查数据进行了整理、绘制成部分统计图如下

各版面选择人数的扇形统计图 各版面选择人数的条形统计图

请根据图中信息,解答下列问题:

(1)该调查的样本容量为 第一版对应扇形的圆心角为

(2)请你补全条形统计图;

(3)若该校有名学生,请你估计全校学生中最喜欢第一版的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线l:y=x+6交x、y轴分别为A、B两点,C点与A点关于y轴对称.动点P、Q分别在线段AC、AB上(点P不与点A、C重合),满足BPQ=BAO

(1)点A坐标是 ,点B的坐标 ,BC=

(2)当点P在什么位置时,APQ≌△CBP,说明理由.

(3)当PQB为等腰三角形时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为弘扬中华传统文化,某校举办了学生国学经典大赛.比赛项目为:.唐诗;.宋词;.论语;.三字经.比赛形式分单人组双人组”.

(1)小丽参加单人组,她从中随机抽取一个比赛项目,恰好抽中三字经的概率是多少?

(2)小红和小明组成一个小组参加双人组比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则小红和小明都没有抽到论语的概率是多少?请用画树状图或列表的方法进行说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】法国数学家柯西于1813年在拉格朗日、高斯的基础上彻底证明了《费马多边形数定理》,其主要突破在五边形数的证明上.如图为前几个五边形数的对应图形,请据此推断,第10五边形数应该为(  ),第2018五边形数的奇偶性为(  )

A. 145;偶数 B. 145;奇数 C. 176;偶数 D. 176;奇数

查看答案和解析>>

同步练习册答案