14£®¼ÆË㣺
£¨1£©3-4+7-28                       
£¨2£©£¨-5.3£©+|-2.5|+£¨-3.2£©-£¨+4.8£©
£¨3£©£¨-1$\frac{3}{4}$£©-£¨+6$\frac{1}{3}$£©-2.25+$\frac{10}{3}$       
£¨4£©-3.5¡Â$\frac{7}{8}$¡Á£¨-$\frac{3}{4}$£©
£¨5£©5¡Á£¨-1£©-£¨-4£©¡Á£¨-$\frac{1}{4}$£©
£¨6£©-5¡Á£¨-$\frac{11}{5}$£©-13¡Á$\frac{11}{5}$-3¡Á£¨-$\frac{11}{5}$£©
£¨7£©5¡Â$\frac{2}{3}$¡Á$\frac{3}{2}$¡Â£¨$\frac{1}{5}$£©                     
£¨8£©1$\frac{1}{2}$¡Á$\frac{5}{7}$-£¨-$\frac{5}{7}$£©¡Á2$\frac{1}{2}$+£¨-$\frac{1}{2}$£©¡Â1$\frac{2}{5}$£®

·ÖÎö £¨1£©¸ù¾ÝÓÐÀíÊýµÄ¼Ó·¨ºÍ¼õ·¨¿ÉÒÔ½â´ð±¾Ì⣻
£¨2£©¸ù¾ÝÓÐÀíÊýµÄ¼Ó·¨ºÍ¼õ·¨¿ÉÒÔ½â´ð±¾Ì⣻
£¨3£©¸ù¾ÝÓÐÀíÊýµÄ¼Ó·¨ºÍ¼õ·¨¿ÉÒÔ½â´ð±¾Ì⣻
£¨4£©¸ù¾ÝÓÐÀíÊýµÄ³Ë³ý·¨¿ÉÒÔ½â´ð±¾Ì⣻
£¨5£©¸ù¾ÝÓÐÀíÊýµÄ³Ë·¨ºÍ¼õ·¨¿ÉÒÔ½â´ð±¾Ì⣻
£¨6£©¸ù¾ÝÓÐÀíÊýµÄ³Ë·¨ºÍ¼õ·¨¿ÉÒÔ½â´ð±¾Ì⣻
£¨7£©¸ù¾ÝÓÐÀíÊýµÄ³Ë³ý·¨¿ÉÒÔ½â´ð±¾Ì⣻
£¨7£©¸ù¾Ý³Ë·¨·ÖÅäÂÉ¿ÉÒÔ½â´ð±¾Ì⣮

½â´ð ½â£º£¨1£©3-4+7-28
=3+£¨-4£©+7+£¨-28£©
=-22£»
£¨2£©£¨-5.3£©+|-2.5|+£¨-3.2£©-£¨+4.8£©
=£¨-5.3£©+2.5+£¨-3.2£©+£¨-4.8£©
=-10.7£»
£¨3£©£¨-1$\frac{3}{4}$£©-£¨+6$\frac{1}{3}$£©-2.25+$\frac{10}{3}$
=£¨-1.75£©+£¨-6$\frac{1}{3}$£©+£¨-2.25£©+$3\frac{1}{3}$
=-7£»
£¨4£©-3.5¡Â$\frac{7}{8}$¡Á£¨-$\frac{3}{4}$£©
=$3.5¡Á\frac{8}{7}¡Á\frac{3}{4}$
=3£»
£¨5£©5¡Á£¨-1£©-£¨-4£©¡Á£¨-$\frac{1}{4}$£©
=£¨-5£©-1
=-6£»
£¨6£©-5¡Á£¨-$\frac{11}{5}$£©-13¡Á$\frac{11}{5}$-3¡Á£¨-$\frac{11}{5}$£©
=11+£¨13-3£©¡Á$£¨-\frac{11}{5}£©$
=11+10¡Á$£¨-\frac{11}{5}£©$
=11-22
=-11£»
£¨7£©5¡Â$\frac{2}{3}$¡Á$\frac{3}{2}$¡Â£¨$\frac{1}{5}$£©
=$5¡Á\frac{3}{2}¡Á\frac{3}{2}¡Á£¨-5£©$
=$-\frac{9}{4}$£»
£¨8£©1$\frac{1}{2}$¡Á$\frac{5}{7}$-£¨-$\frac{5}{7}$£©¡Á2$\frac{1}{2}$+£¨-$\frac{1}{2}$£©¡Â1$\frac{2}{5}$
=$\frac{3}{2}¡Á\frac{5}{7}+\frac{5}{7}¡Á\frac{5}{2}+£¨-\frac{1}{2}£©¡Á\frac{5}{7}$
=[$\frac{3}{2}+\frac{5}{2}+£¨-\frac{1}{2}£©$]¡Á$\frac{5}{7}$
=$\frac{7}{2}¡Á\frac{5}{7}$
=$\frac{5}{2}$£®

µãÆÀ ±¾Ì⿼²éÓÐÀíÊýµÄ»ìºÏÔËË㣬½âÌâµÄ¹Ø¼üÊÇÃ÷È·ÓÐÀíÊý»ìºÏÔËËãµÄ¼ÆËã·½·¨£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®¼ÆË㣺£¨-a£©3¡Á£¨-a£©=a4£»£¨-2xy£©3=-8x3y3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®Èçͼ£¬Æ½ÐÐËıßÐÎABCDÖУ¬EÊDZßBCÉϵĵ㣬AE½»BDÓÚµãF£¬AD=9£¬Èç¹û$\frac{BE}{BC}$=$\frac{2}{3}$£¬ÄÇô$\frac{BF}{FD}$=$\frac{2}{3}$£¬BE=6£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®Èçͼ£¬Ö±Ïßl1¡¢l2¡¢l3ÏཻÓÚÒ»µãO£¬¶Ô¶¥½ÇÒ»¹²ÓÐ6¶Ô£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®½â·½³Ì×飺
£¨1£©$\left\{\begin{array}{l}x-y=1¢Ù\\ 2x+y=5¢Ú\end{array}\right.$
£¨2£©$\left\{\begin{array}{l}3x+4y=8¢Ù\\ 4x+3y=-1¢Ú\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖª£ºÈçͼ£¬AD¡ÎBC£¬EF´¹Ö±Æ½·ÖBD£¬ÓëAD£¬BC£¬BD·Ö±ð½»ÓÚµãE£¬F£¬O£®ÇóÖ¤£º
£¨1£©¡÷BOF¡Õ¡÷DOE£»
£¨2£©DE=DF£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÒÑÖªÈý½ÇÐεÄÁ½±ß³¤·Ö±ðΪ3cmºÍ9cm£¬ÔòµÚÈý±ßµÄȡֵ·¶Î§6cm£¼x£¼12cm£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖª£ºÈçͼ¡÷ABCÖУ¬D¡¢E¡¢F·Ö±ðÊÇAB¡¢AC¡¢BCµÄÖе㣮
£¨1£©ÈôAB=10cm£¬AC=6cm£¬ÔòËıßÐÎADFEµÄÖܳ¤Îª16cm
£¨2£©Èô¡÷ABCÖܳ¤Îª6cm£¬Ãæ»ýΪ12cm2£¬Ôò¡÷DEFµÄÖܳ¤ÊÇ3£¬Ãæ»ýÊÇ3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®°Ñ-6+£¨-7£©+£¨-2£©-£¨-9£©Ð´³ÉÊ¡ÂԼӺźÍÀ¨ºÅµÄºÍµÄÐÎʽΪ-6-7-2+9£¬¶Á×÷-6¼õ7¼õ2¼Ó9»ò-6£¬-7£¬-2µÄºÍÓë9µÄºÍ£¨ÌîÁ½ÖÖ²»Í¬µÄ¶Á·¨£©£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸