分析 由条件可证得△ABN∽△BNM∽△ABM,且可求得线段AM的长度,利用对应线段的比相等可求得AN和MN,进一步可得到$\frac{AO}{AM}$=$\frac{AN}{AC}$,且∠CAM=∠NAO,可证得△AON∽△AMC,利用相似三角形的性质可求得ON.
解答
解:∵AB=4,BM=2,
∴AM=$\sqrt{{4}^{2}+{2}^{2}}$=2$\sqrt{5}$,
∵∠ABM=90°,BN⊥AM,
∴△ABN∽△BNM∽△AMB,
∴AB2=AN×AM,BM2=MN×AM,
∴AN=$\frac{8\sqrt{5}}{5}$,MN=$\frac{2\sqrt{5}}{5}$,
∵AB=4,CD=4,
∴AC=4$\sqrt{2}$,
∴AO=2$\sqrt{2}$,
∵$\frac{AO}{AM}$=$\frac{AN}{AC}$=$\frac{\sqrt{10}}{5}$,且∠CAM=∠NAO
∴△AON∽△AMC,
∴$\frac{ON}{MC}$=$\frac{AO}{AM}$,即$\frac{ON}{6}$=$\frac{2\sqrt{2}}{2\sqrt{5}}$,
∴ON=$\frac{\sqrt{10}}{5}$.
故答案为:$\frac{\sqrt{10}}{5}$.
点评 本题主要考查三角形相似的判定和性质,由相似得到线段的比相等再证明相似是本题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com