【题目】已知,如图:在平面直角坐标系中,点D是直线y=﹣x上一点,过O、D两点的圆⊙O1分别交x轴、y轴于点A和B.
(1)当A(﹣12,0),B(0,﹣5)时,求O1的坐标;
(2)在(1)的条件下,过点A作⊙O1的切线与BD的延长线相交于点C,求点C的坐标;
(3)若点D的横坐标为,点I为△ABO的内心,IE⊥AB于E,当过O、D两点的⊙O1的大小发生变化时,其结论:AE﹣BE的值是否发生变化?若不变,请求出其值;若变化,请求出变化范围.
【答案】(1)O1(﹣6,﹣2.5);(2)C(﹣7,12);(3)见解析.
【解析】
(1)连接AB,过点O1作O1K⊥OA于点K,由∠AOB=90°,可知:AB过圆心O1,已知点A,点B的坐标,O1A=O1B,则O1K=OB,OK=OA,从而可将点O1的坐标求出;
(2)证△ACH≌△BAO,得CH=OA,OH=AO-OB,从而可将点C的坐标求出;
(3)作辅助线,作DN⊥X轴于N,DM⊥Y轴于M,可知:四边形DMON为正方形,通过证明△ADN≌△BDM,得AN=BM,故AE-BEAG-BF=(OA-OG)-(OB-OF)=OA-OB=(AN+OG)-(AN-MO)=OG+OM=7为定值.
(1)连接AB,过点O1作O1K⊥OA于点K,
∵∠AOB=90°,
∴AB经过圆心O1,
∵A(﹣12,0),B(0,﹣5),O1K⊥O1A,O1A=O1B,
∴O1K=OB=2.5,OK=OA=×12=6,
∴O1(﹣6,﹣2.5);
(2)过点C作CH⊥x轴于点H,连接AD、AB,
∵AC为⊙O1的切线
∴∠CAB=90°,
∵直线OD解析式为y=﹣x,
∴∠AOD=∠ABD=45°,
∴△ABC为等腰直角三角形,
∴AC=AB,
∵AC为⊙O1的切线,
∴∠CAH=∠ABO,
∵∠CHA=∠AOB=90°,AC=AB,
∴△ACH≌△BAO,
∴CH=OA=12,OH=AO﹣OB=12﹣5=7,
∴点C(﹣7,12);
(3)D是直线y=﹣x上一点,作DN⊥X轴于N,DM⊥Y轴于M,
DM=DN=NO=MO,G、F分别是与X轴、Y轴的切点,由AE=AG,BE=BF,IG=OG=OF=IF,
∵∠ADN+∠NDB=90°,∠BDM+∠NDB=90°
∴∠ADN=∠BDM,
∵∠ADN=∠BDM,ND=DM,∠AND=∠BMD=90°
∴△ADN≌△BDM,
∴AN=BM,
∴AE﹣BE=AG﹣BF,=(OA﹣OG)﹣(OB﹣OF)=OA﹣OB=(AN+ON)﹣(AN﹣MO)=ON+OM==7.
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CECA.
(1)求证:BC=CD;
(2)分别延长AB,DC交于点P,若PB=OB,CD=2,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,方格纸中小正方形的边长为1,,两点在格点上,要在图中格点上找到点,使得的面积为2,满足条件的点有( )
A.无数个B.7个C.6个D.5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在等腰和等腰中,,,连接交于点.
(1)如图1,若:
①与的数量关系为 ;
②的度数为 ;
图1
(2)如图2,若:
图2
①判断与之间存在怎样的数量关系?并说明理由;
②求的度数;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,AC=15.sin∠A=,点D是BC的中点,点P是AB上一动点(不与点B重合),延长PD至E,使DE=PD,连接EB、EC.
(1)求证;四边形PBEC是平行四边形;
(2)填空:
①当AP的值为 时,四边形PBEC是矩形;
②当AP的值为 时,四边形PBEC是菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,弦CD垂直平分OB于点E,点F在AB延长线上,∠AFC=30°.
(1)求证:CF为⊙O的切线.
(2)若半径ON⊥AD于点M,CE=,求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB是⊙O的直径,直线l与⊙O相切于点C且,弦CD交AB于E,BF⊥l,垂足为F,BF交⊙O于G.
(1)求证:CE2=FGFB;
(2)若tan∠CBF=,AE=3,求⊙O的直径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读与应用:
阅读1:a、b为实数,且a>0,b>0,因为,所以,从而(当a=b时取等号).
阅读2:函数(常数m>0,x>0),由阅读1结论可知: ,所以当即时,函数的最小值为.
阅读理解上述内容,解答下列问题:
问题1:已知一个矩形的面积为4,其中一边长为x,则另一边长为,周长为,求当x=__________时,周长的最小值为__________.
问题2:已知函数y1=x+1(x>-1)与函数y2=x2+2x+17(x>-1),当x=__________时, 的最小值为__________.
问题3:某民办学习每天的支出总费用包含以下三个部分:一是教职工工资6400元;二是学生生活费每人10元;三是其他费用.其中,其他费用与学生人数的平方成正比,比例系数为0.01.当学校学生人数为多少时,该校每天生均投入最低?最低费用是多少元?(生均投入=支出总费用÷学生人数)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com