精英家教网 > 初中数学 > 题目详情

【题目】如图,已知:∠BAC的平分线与BC的垂直平分线DG相交于点D,DE⊥AB,DF⊥AC,垂足分别为E、F,AB=6,AC=3,则BE=_____

【答案】1.5

【解析】

如图,连接CD,BD,根据角平分线的性质可得DF=DE,∠F=∠DEB=90°,∠ADF=∠ADE,即可得AE=AF,然后根据垂直平分线的性质可得CD=BD,则可通过HL证明Rt△CDF≌Rt△BDE,得到BE=CF,然后即可得到答案.

如图,连接CD,BD,

∵AD∠BAC的平分线,DE⊥AB,DF⊥AC,

∴DF=DE,∠F=∠DEB=90°,∠ADF=∠ADE,

∴AE=AF,

∵DGBC的垂直平分线,

∴CD=BD,

Rt△CDFRt△BDE中,

∴Rt△CDF≌Rt△BDE(HL),

∴BE=CF,

∴AB=AE+BE=AF+BE=AC+CF+BE=AC+2BE,

∵AB=6,AC=3,

∴BE=1.5.

故答案为:1.5.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】ABC和△ADE都是等腰直角三角形, BAC=DAE=90°.

(1)如图1,D、EAB、ACBD,CE满足怎样的数量关系和位置关系?(直接写出答案)

(2)如图2,D在△ABC内部, E在△ABC外部,连结BD, CE, BD,CE满足怎样的数量关系和位置关系?请说明理由.

(3)如图3,D,E都在△ABC外部,连结BD, CE, CD, EB,BD, CE相交于H. BD=,求四边形BCDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在 RtABC 中,∠ACB=90°BC=5,点 P 在边 AB 上,连接 CP.将△BCP 沿直线CP 翻折后,点 B 恰好落在边 AC 的中点处,则点 P AC 的距离是( )

A. 2.5 B. C. 3.5 D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的四个顶点A、B、C、D正好分别在四条平行线l1、l3、l4、l2上.若从上到下每两条平行线间的距离都是2cm,则正方形ABCD的面积为cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点C在以AB为直径的半圆上,AB=4 ,AC=4,点D在线段AB上运动,点E与点D关于AC对称,DF⊥DE,DF交EC的延长线于点F,当点D从点A运动到点B时,线段EF扫过的面积是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】Rt△ABC中,∠ACB=90°,CD⊥ABD,∠BAC的平分线AFCD于点E,交BCF,CM⊥AFM,CM的延长线交AB于点N.

(1)求证:EM=FM;

(2)求证:AC=AN.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场经营某种品牌的玩具,进价是20元,根据市场调查:在一段时间内,销售单价是30元时,销售量是500件,而销售单价每涨1元,就会少售出10件玩具.
(1)不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:

销售单价(元)

x

销售量y(件)

销售玩具获得利润w(元)


(2)在(1)问条件下,若商场获得了8000元销售利润,求该玩具销售单价x应定为多少元.
(3)在(1)问条件下,若玩具车规定该品牌玩具销售单价不低于35元,且商场要完成不少于350件的销售任务,求商场销售该品牌服装获得的最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】十一长假期间,小张和小李决定骑自行车外出旅游,两人相约一早从各自家中出发,已知两家相距10千米,小张出发必过小李家.

(1)若两人同时出发,小张车速为20千米,小李车速为15千米,经过多少小时能相遇?

(2)若小李的车速为10千米,小张提前20分钟出发,两人商定小李出发后半小时二人相遇,则小张的车速应为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的不等式x﹣1.

(1)当m=1时,求该不等式的解集;

(2)m取何值时,该不等式有解,并求出解集.

查看答案和解析>>

同步练习册答案