精英家教网 > 初中数学 > 题目详情

【题目】某商场经营某种品牌的玩具,进价是20元,根据市场调查:在一段时间内,销售单价是30元时,销售量是500件,而销售单价每涨1元,就会少售出10件玩具.
(1)不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:

销售单价(元)

x

销售量y(件)

销售玩具获得利润w(元)


(2)在(1)问条件下,若商场获得了8000元销售利润,求该玩具销售单价x应定为多少元.
(3)在(1)问条件下,若玩具车规定该品牌玩具销售单价不低于35元,且商场要完成不少于350件的销售任务,求商场销售该品牌服装获得的最大利润是多少?

【答案】
(1)﹣10x+800;﹣10x2+1000x﹣16000
(2)解:根据题意,得:﹣10x2+1000x﹣16000=8000,

整理,得:x2﹣100x+2400=0,

解得:x=40或x=60,

∵x>40,

∴x=60,

答:该玩具销售单价x应定为60元;


(3)解:由题意知

解得:35≤x≤45,

∵w=﹣10x2+1000x﹣16000=﹣10(x﹣50)2+9000,

∴当x<50时,w随x的增大而增大,

∴当x=45时,w取得最大值,最大值为﹣10(45﹣50)2+9000=8750,

答:商场销售该品牌服装获得的最大利润是8750元.


【解析】解:(1)由题意,得:y=500﹣10(x﹣30)=﹣10x+800, w=(﹣10x+800)(x﹣20)=﹣10x2+1000x﹣16000.
故答案为:﹣10x+800,﹣10x2+1000x﹣16000.
(1)根据销售量与销售单价之间的变化关系就可以直接求出y与x之间的关系式;根据销售问题的利润=售价﹣进价就可以表示出w与x之间的关系;(2)根据以上关于利润的相等关系列方程求解可得;(3)根据销售单价不低于35元,销售量不少于350件建立不等式组求得x的范围,将函数解析式配方成顶点式,结合函数性质和x的范围求出其最大值即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图的数阵是由88个偶数组成:

(1)观察数阵中平行四边形框内的四个数之间的关系,在数阵中任意作一个相同的平行四边形框圈出四个数,设其中最小的数为x,那么其他三个数怎样表示?

(2)甲同学这样圈出的四个数的和为432,你能求出这四个数吗?

(3)乙同学想用这样的框圈出和为172的四个数,可能吗?

(4)你能用这样的框圈出和为352的四个数吗?若能,请写出这四个数;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知AOB是一个直角,作射线OC,再分别作AOCBOC的平分线ODOE

(1) 如图1,当BOC=70°时,求DOE的度数.

(2) 如图2,当射线OCAOB内绕点O旋转时,DOE的大小是否发生变化?说明理由.

(3) 当射线OCAOB外绕点O旋转且AOC为钝角时,画出图形,直接写出相应的DOE的度数.(不必写出过程)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知:∠BAC的平分线与BC的垂直平分线DG相交于点D,DE⊥AB,DF⊥AC,垂足分别为E、F,AB=6,AC=3,则BE=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知矩形ABCD的两条对角线相交于点O,过点A作AG⊥BD分别交BD、BC于点G、E.
(1)求证:BE2=EGEA;
(2)连接CG,若BE=CE,求证:∠ECG=∠EAC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB∥CD,∠A=90°,EAD边中点,CE平分∠BCD.

(1)求证:BE平分∠ABC;

(2)若AB=2,CD=1,求BC长;

(3)若△BCE的面积为6,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:
(1)(﹣1)2+2sin30°+ 0
(2)(1+

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】请阅读下列材料:

我们可以通过以下方法求代数式x2+6x+5的最小值.

x2+6x+5=x2+2x3+32﹣32+5=(x+3)2﹣4,

(x+3)20

∴当x=﹣3时,x2+6x+5有最小值﹣4.

请根据上述方法,解答下列问题:

(Ⅰ)x2+4x﹣1=x2+2x2+22﹣22﹣1=(x+a)2+b,则ab的值是_____

(Ⅱ)求证:无论x取何值,代数式x2+2x+7的值都是正数;

(Ⅲ)若代数式2x2+kx+7的最小值为2,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)已知等腰三角形的一边长等于8cm,一边长等于9cm,求它的周长;

(2)等腰三角形的一边长等于6cm,周长等于28cm,求其他两边的长.

查看答案和解析>>

同步练习册答案