【题目】(1)已知等腰三角形的一边长等于8cm,一边长等于9cm,求它的周长;
(2)等腰三角形的一边长等于6cm,周长等于28cm,求其他两边的长.
【答案】(1)周长为25cm或26cm;(2)其他两边的长为11cm、11cm.
【解析】
(1)此题要进行分类讨论:当8cm为腰时,则底为9cm;当9cm为腰时,则底为8cm;
(2)分两种情况,6cm为腰或6cm为底,由此进行讨论即可得答案.
(1)8cm是腰长时,三角形的三边分别为8cm、8cm、9cm,
能组成三角形,周长=8+8+9=25cm,
8cm是底边时,三角形的三边分别为8cm、9cm、9cm,能组成三角形,
周长=8+9+9=26cm,综上所述,周长为25cm或26cm;
(2)6cm是腰长时,其他两边分别为6cm,16cm,
∵6+6=12<16,
∴不能组成三角形,
6cm是底边时,腰长为(28-6)=11cm,
三边分别为6cm、11cm、11cm,能组成三角形,
所以,其他两边的长为11cm、11cm.
科目:初中数学 来源: 题型:
【题目】如图,需在一面墙上绘制几个相同的抛物线型图案.按照图中的直角坐标系,最左边的抛物线可以用y=ax2+bx(a≠0)表示.已知抛物线上B,C两点到地面的距离均为 m,到墙边OA的距离分别为 m, m.
(1)求该拋物线的函数关系式,并求图案最高点到地面的距离;
(2)若该墙的长度为10m,则最多可以连续绘制几个这样的拋物线型图案?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在△ABC中,AB=AC,∠A=60°,BD⊥AC于点D,DG∥AB,DG交BC于点G,点E在BC的延长线上,且CE=CD.
(1)求∠ABD和∠BDE的度数;
(2)写出图中的等腰三角形(写出3个即可).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图①,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.
(2)如图②,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,边长为2的正方形OABC的顶点A、C分别在x轴、y轴的正半轴上,二次函数y=﹣ x2+bx+c的图象经过B、C两点.
(1)求该二次函数的解析式;
(2)结合函数的图象探索:当y>0时x的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com