【题目】解不等式(组)
(1)解不等式:1﹣ ≤
(2)不等式组 ,并将其解集在数轴上表示出来.
【答案】
(1)解:1﹣ ≤
去分母,得6﹣3(x﹣2)≤2(x+1)
去括号,得6﹣3x+6≤2x+2
移项、合并同类项,得﹣5x≤﹣10,
系数化为1,得x≥2
(2)解:
由①得:x>﹣6,
由②得:x<6,
∴原不等式组得解集为:﹣6<x<6.
在数轴上表示:
【解析】(1)去分母、去括号,然后移项、合并同类项,系数化为1,即可求得;(2)解先求出各不等式的解集,再求其公共解集即可.
【考点精析】解答此题的关键在于理解不等式的解集在数轴上的表示的相关知识,掌握不等式的解集可以在数轴上表示,分三步进行:①画数轴②定界点③定方向.规律:用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,等于用实心圆点,不等于用空心圆圈,以及对一元一次不等式的解法的理解,了解步骤:①去分母;②去括号;③移项;④合并同类项; ⑤系数化为1(特别要注意不等号方向改变的问题).
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连结DH、BE与相交于点G,以下结论中正确的结论有( ) (1.)△ABC是等腰三角形 (2.)BF=AC
(3.)BH:BD:BC=1: (4.)GE2+CE2=BG2 .
A.1个
B.2个
C.3个
D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,直线与轴、轴分别交于点B、 A,点D、E分别是AO、AB的中点,连接DE,点P从点D出发,沿DE方向匀速运动,速度为1cm/s;与此同时,点Q从点B出发,沿BA方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为.
(1)分别写出点P和Q坐标(用含t的代数式表示);
(2)①当点Q在BE之间运动时,设五边形PQBOD的面积为(cm2),求y与t之间的函数关系式;
②在①的情况下,是否存在某一时刻t,使PQ分四边形BODE两部分的面积之比为S△PQE:S五边形PQBOD=1:29?若存在,求出此时t的值;若不存在,请说明理由;
(3)以P为圆心、PQ长为半径作圆,请问:在整个运动过程中,当t为何值时,⊙P能与△ABO的一边相切?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如果规定收入为正,支出为负,收入200元记作+200元,那么支出37元记作( )
A. 200元 B. -37元 C. 163元 D. 37元
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在锐角△ABC中,∠BAC=45°,AB=2,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com