精英家教网 > 初中数学 > 题目详情
17.计算
(1)$\sqrt{12x}$÷$\frac{2\sqrt{y}}{5}$;              
(2)$\frac{\sqrt{8.4}}{\sqrt{0.12}}$;       
(3)-$\sqrt{27}$÷(3$\sqrt{3}$).

分析 结合二次根式的乘除法运算法则进行求解即可.

解答 解:(1)原式=2$\sqrt{3x}$×$\frac{5}{2\sqrt{y}}$
=$\frac{5\sqrt{3x}}{\sqrt{y}}$
=$\frac{5\sqrt{3xy}}{y}$.
(2)原式=$\sqrt{\frac{8.4}{0.12}}$
=$\sqrt{70}$.
(3)原式=-3$\sqrt{3}$÷(3$\sqrt{3}$)
=-1.

点评 本题考查了二次根式的乘除法,解答本题的关键在于熟练掌握该知识点的概念和运算法则.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

7.当x=2是,式子y=5-(x-2)2有最大值,最大值为5;当y=-1时,式子y2+2y-5有最小值,最小值为-6.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.某公司去年1~3月平均每月盈利3万元,4~7月平均每月亏损2.5万元,8~10月平均每月盈利3.4万元,11~12月平均每月亏损1.6万元.问:该公司去年总的盈亏情况如何?(假设盈利为正,亏损为负)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.对于平面直角坐标系xOy中的点P和图形G,给出如下定义:在图形G上若存在两点M,N,使△PMN为正三角形,则称图形G为点P的T型线,点P为图形G的T型点,△PMN为图形G关于点P的T型三角形.若H(0,-2)是抛物线y=x2+n的T型点,则n的取值范围是(  )
A.n≥-1B.n≤-1C.n≥-$\frac{5}{4}$D.n≤-$\frac{5}{4}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.某学校准备修建一个面积为200平方米的矩形花圃,它的长比宽多10米.设花圃的宽为x米,则可列方程为x(x+10)=200,化为一般形式为x2+10x-200=0.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.已知弦AB与CD交于点E,弧$\widehat{BC}$的度数比弧$\widehat{AD}$的度数大20°,若∠CEB=m°,则∠CAB=$\frac{m+10}{2}$(用关于m的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.解方程|x-1|+|x+2|=5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.先阅读材料:
试判断20001999+19992000的末位数字.
解:∵20001999的末位数字是零,而19992的末位数字是1,
则19992000=(199921000的末位数字是1,
∴20001999+19992000的末位数字是1.
同学们,根据阅读材料,你能否立即说出“20001999+19992000的末尾数字”?有兴趣的同学,判断21999+21999的末位数字是多少.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于点D,BE⊥MN于点N,求证:
(1)△ADC≌△CEB;
(2)DE=AD+BE.

查看答案和解析>>

同步练习册答案