精英家教网 > 初中数学 > 题目详情

【题目】问题:将菱形的面积五等分.小红发现只要将菱形周长五等分,再将各分点与菱形的对角线交点连接即可解决问题.如图,点O是菱形ABCD的对角线交点,AB5,下面是小红将菱形ABCD面积五等分的操作与证明思路,请补充完整.

1)在AB边上取点E,使AE4,连接OAOE

2)在BC边上取点F,使BF______,连接OF

3)在CD边上取点G,使CG______,连接OG

4)在DA边上取点H,使DH______,连接OH.由于AE__________________________________________.可证SAOES四边形EOFBS四边形FOGCS四边形GOHDSHOA

【答案】(1)见解析;(23;(32;(41EBBFFCCGGDDHHA

【解析】

利用菱形四条边相等,分别在四边上进行截取和连接,得出AE=EB+BF=FC+CG+GD+DH

=HA,进一步求得SAOES四边形EOFBS四边形FOGCS四边形GOHDSHOA.即可.

1)在AB边上取点E,使AE4,连接OAOE

2)在BC边上取点F,使BF3,连接OF

3)在CD边上取点G,使CG2,连接OG

4)在DA边上取点H,使DH1,连接OH

由于AEEBBFFCCGGDDHHA

可证SAOES四边形EOFBS四边形FOGCS四边形GOHDSHOA

故答案为:321EBBFFCCGGDDHHA

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,P点是某海域内的一座灯塔的位置,船A停泊在灯塔P的南偏东53°方向的50海里处,船B位于船A的正西方向且与灯塔P相距20海里.(本题参考数据sin53°≈0.80cos53°≈0.60tan53°≈1.33)

(1)试问船B在灯塔P的什么方向?

(2)求两船相距多少海里?(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,曲线AB是顶点为B,与y轴交于点A的抛物线 的一部分,曲线BC是双曲线的一部分,由点C开始不断重复“A-B-C”的过程,形成一组波浪线.点P(2017,m)与Q(2020,n)均在该波浪线上, =_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,直线与双曲线的一个交点是

1)求的值;

2)设点是双曲线上一点,直线轴交于点.若,结合图象,直接写出点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两地相距300千米,一辆货车和一辆轿车分别从甲地开往乙地(轿车的平均速度大于货车的平均速度),如图线段OA和折线BCD分别表示两车离甲地的距离y(单位:千米)与时间x(单位:小时)之间的函数关系.则下列说法正确的是(

A.两车同时到达乙地

B.轿车在行驶过程中进行了提速

C.货车出发3小时后,轿车追上货车

D.两车在前80千米的速度相等

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,半圆O的直径AB5cm,点MAB上且AM1cm,点P是半圆O上的动点,过点BBQPMPM(或PM的延长线)于点Q.设PMxcmBQycm.(当点P与点A或点B重合时,y的值为0)小石根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小石的探究过程,请补充完整:

1)通过取点、画图、测量,得到了xy的几组值,如下表:

x/cm

1

1.5

2

2.5

3

3.5

4

y/cm

0

3.7

______

3.8

3.3

2.5

______

2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;

3)结合画出的函数图象,解决问题:当BQ与直径AB所夹的锐角为60°时,PM的长度约为______cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线l1yk1x+bA0,﹣3),B52),直线l2yk2x+2

1)求直线l1的表达式;

2)当x≥4时,不等式k1x+bk2x+2恒成立,请写出一个满足题意的k2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面是作三角形一边上的高的尺规作图过程.

已知:ABC

求作:ABC的边BC上的高AD

作法:如图2

1)分别以点B和点C为圆心,BACA为半径作弧,两弧相交于点E

2)作直线AEBC边于点D.所以线段AD就是所求作的高.

请回答:该尺规作图的依据是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,ABCD2AB=2BC=CD=10tanB=,则AD=______

查看答案和解析>>

同步练习册答案