【题目】在△ABC中,AB=AC,∠BAC=90°,点D为AC上一动点.
(1)如图1,点E、点F均是射线BD上的点并且满足AE=AF,∠EAF=90°.求证:△ABE≌△ACF;
(2)在(1)的条件下,求证:CF⊥BD;
(3)由(1)我们知道∠AFB=45°,如图2,当点D的位置发生变化时,过点C作CF⊥BD于F,连接AF.那么∠AFB的度数是否发生变化?请证明你的结论.
【答案】(1)详见解析;(2)详见解析;(3)∠AFB=45°不变化,理由详见解析.
【解析】
(1)易得∠BAE=∠CAF,由已知AB=AC、AE=AF,可得△ABE≌△ACF;
(2)由题意得∠ABE+∠BDA=90°,由(1)得∠ABE=∠ACF,又∠BDA=∠CDF,可得答案;
(3) ∠AFB=45°不变化,理由如下:过点A作AF的垂线交BM于点E,可证得△ABE≌△ACF,可得AE=AF,△AEF是等腰直角三角形,∠AFB=45°.
(1)∵∠BAC=∠BAE+∠EAD=90°,∠EAF=∠CAF+∠EAD=90°
∴∠BAE=∠CAF
在△ABE和△ACF中
∴△ABE≌△ACF(SAS)
(2)∵∠BAC=90°
∴∠ABE+∠BDA=90°,
由(1)得△ABE≌△ACF
∴∠ABE=∠ACF
∴∠BDA+∠ACF=90°
又∵∠BDA=∠CDF
∴∠CDF+∠ACF=90°
∴∠BFC=90°
∴CF⊥BD
(3)∠AFB=45°不变化,理由如下:
过点A作AF的垂线交BM于点E
∵CF⊥BD
∴∠BAC=90°
∴∠ABD+∠BDA=90°
同理∠ACF+∠CDF=90°
∵∠CDF=∠ADB
∴∠ABD=∠ACF
同(1)理得∠BAE=∠CAF
在△ABE和△ACF中
∴△ABE≌△ACF(ASA)
∴AE=AF
∴△AEF是等腰直角三角形
∴∠AFB=45°.
科目:初中数学 来源: 题型:
【题目】如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是( )
A.2
B.4
C.4
D.8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1是一种包装盒的表面展开图,将它围起来可得到一个几何体的模型.
(1)这个几何体模型的名称是
(2)如图2是根据a,b,h的取值画出的几何体的主视图和俯视图(图中实线表示的长方形),请在网格中画出该几何体的左视图.
(3)若h=a+b,且a,b满足 a2+b2﹣a﹣6b+10=0,求该几何体的表面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,△ABC中,∠BAC=90°,点D在BC边上,且BD=BA,过点B画AD的垂线交AC于点O,以O为圆心,AO为半径画圆.
(1)求证:BC是⊙O的切线;
(2)若⊙O的半径为8,tan∠C= ,求线段AB的长,sin∠ADB的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若关于x、y的二元一次方程组的解都为正数.
(1)求的取值范围;
(2)若上述二元一次方程组的解是一个等腰三角形的一条腰和一条底边的长,且这个等腰三角形的周长为9,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】先阅读理解下面的例题,再按要求解答下列问题:
例题:求代数式y2+4y+8的最小值.
解:y2+4y+8=y2+4y+4+4=(y+2)2+4
∵(y+2)2≥0
∴(y+2)2+4≥4
∴y2+4y+8的最小值是4.
(1)求代数式m2+m+4的最小值;
(2)求代数式4﹣x2+2x的最大值;
(3)某居民小区要在一块一边靠墙(墙长15m)的空地上建一个长方形花园ABCD,花园一边靠墙,另三边用总长为20m的栅栏围成.如图,设AB=x(m),请问:当x取何值时,花园的面积最大?最大面积是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在平面直角坐标系中,O为坐标原点,△OAB的顶点A、B的坐标分别是A(0,5),B(3,1),过点B画BC⊥AB交直线y=﹣m(m> )于点C,连结AC,以点A为圆心,AC为半径画弧交x轴负半轴于点D,连结AD、CD.
(1)求证:△ABC≌△AOD;
(2)设△ACD的面积为S,求S关于m的函数关系式;
(3)若四边形ABCD恰有一组对边平行,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】方法回顾:在进行数值估算时,我们常根据所求数值的条件确定它的大致范围,然后通过逐步缩小数值存在范围的方法,最终求得较为准确的数值.
如我们在探究面积为2的正方形的边长a的值时,有如下探究过程:
1<a<2 | 1<s<4 |
1.4<a<1.5 | 1.96<s<2.25 |
1.41<a<1.42 | 1.9881<s<2.0164 |
1.414<a<1.415 | 1.999396<s<2.002225 |
我们也可以借助数轴直观地看出“逐步缩小数值的存在范图”的过程,
这种方法在我们的解决向题的过程中经常会用到
问题提出:a是小于100的正整数,已知它的立方,不借助计算器,如何确定a呢?
问题探究:我们不妨由简单到复杂,从一位整数的立方开始硏究
步骤一、若13<a3<103,则1<a<10.即已知一个一位整数的立方为a3,怎样确定a?
易得:13=1,23=8,33=27,43=64,53=125,63=216,73=343:83=512,93=729,可以通过从1到9的九个整数的立方值确定这个数.观察这九个立方值我们还能发现,他们的个位数字各不相同.
步骤二、若103<a3<1003.则10<a<100,即已知一个两位数的立方为a3,怎样确定a?我们不妨举几个特例,以便寻找解决问题的方法.
特例1.如果一个两位整数a的立方是5832,怎样确定a?
因为103<5832<1003,所以10<a<100,a是一个两位数.
又因为103<5832<203,所以我们可以确定5832的十位数字是 ;再根据步骤一我们就能得出它的个位数是 ;从而确定这个两位数是 .
特例2.如果x是一个两位整数,且x3=614125,请你仿照上面的过程说明你确定这个两位整数的方法.
拓展应用:一颗近似球形的小行星的体积的为2624000πm3,请你根据以上方法求出这个小行星的半径.(球的体积公式v=πR3)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB是⊙O的弦,OB=2,∠B=30°,C是弦AB上任意一点(不与点A、B重合),连接CO并延长CO交⊙O于点D,连接AD.
(1)弦AB=(结果保留根号);
(2)当∠D=20°时,求∠BOD的度数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com