【题目】如图,长方形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD.
(1)求证:OP=OF;
(2)若设AP=x,试求CF的长(用含x的代数式表示);
(3)求AP的长.
【答案】(1)证明见解析;(2)CF=8﹣x;(3)AP=4.8.
【解析】
(1)由矩形的性质得出∠D=∠A=∠C=90°,由翻折的性质得出∠E=∠D,由ASA证明△ODP≌△OEF,得出OP=OF;
(2)由全等三角形的性质得出PD=EF ,得出DF=EP,设AP=PE=DF=x,
则CF=8﹣x即可;
(3)由勾股定理得出方程,解方程即可.
(1)∵四边形ABCD是矩形,
∴∠D=∠A=∠C=90°,
由翻折的性质可知:∠E=∠A=90°,
∴∠E=∠D,
在△ODP和△OEF中,
,
∴△ODP≌△OEF(ASA).
∴OP=OF.
(2)∵四边形ABCD是矩形,
∴AB=CD=8,
∵△ODP≌△OEF(ASA),
∴OP=OF,PD=EF.
∴DF=EP.
∵AP=PE=DF=x,
∴CF=8﹣x.
(3)∵AD=BC=6,PA=PE=DF=x,
∴PD=EF=6﹣x,CF=8﹣x,BF=8﹣(6﹣x)=2+x,
在Rt△FCB根据勾股定理得:BC2+CF2=BF2,
即62+(8﹣x)2=(x+2)2,
解得:x=4.8,
∴AP=4.8.
科目:初中数学 来源: 题型:
【题目】甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:
①甲步行的速度为60米/分;
②乙走完全程用了32分钟;
③乙用16分钟追上甲;
④乙到达终点时,甲离终点还有300米
其中正确的结论有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点A(﹣3,0),点B(0,4),点C在x轴正半轴上,若△ABC是等腰三角形,那么所有满足条件的点C的坐标是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某批发门市销售两种商品,甲种商品每件售价为300元,乙种商品每件售价为80元.新年来临之际,该门市为促销制定了两种优惠方案:
方案一:买一件甲种商品就赠送一件乙种商品;
方案二:按购买金额打八折付款.
某公司为奖励员工,购买了甲种商品20件,乙种商品x(x≥20)件.
(1)分别写出优惠方案一购买费用y1(元)、优惠方案二购买费用y2(元)与所买乙种商品x(件)之间的函数关系式;
(2)若该公司共需要甲种商品20件,乙种商品40件.设按照方案一的优惠办法购买了m件甲种商品,其余按方案二的优惠办法购买.请你写出总费用w与m之间的关系式;利用w与m之间的关系式说明怎样购买最实惠.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图表示的是热带风暴从发生到结束的全过程,请结合图象回答下列问题:
(1)热带风暴从开始发生到结束共经历了 个小时;
(2)从图象上看,风速在 (小时)时间段内增大的最快?最大风速是 千米/时;
(3)风速从开始减小到最终停止,平均每小时减小多少千米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一巡查机器人接到指令,从原点O出发,沿O→A1→A2→A3→A4→A5→A6→A7→A8…的路线移动,每次移动1个单位长度,依次得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,﹣1),A6(3,﹣1),A7(3,0),A8(4,0),…若机器人巡查到某一位置的横坐标为23时,即停止,则其纵坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.
(1)求甲、乙两个工程队每天各修路多少千米?
(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y=(k>0)的图象与BC边交于点E.
(1)当F为AB的中点时,求该函数的解析式;
(2)当k为何值时,△EFA的面积为.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com