【题目】如图,AB是⊙O的直径,C为⊙O上一点,AD⊥CD,(点D在⊙O外)AC平分∠BAD.
(1)求证:CD是⊙O的切线;
(2)若DC、AB的延长线相交于点E,且DE=12,AD=9,求BE的长.
【答案】(1)见解析(2)
【解析】试题分析:(1)连接OC,根据条件先证明OC∥AD,然后证出OC⊥CD即可;(2)先利用勾股定理求出AE的长,再根据条件证明△ECO∽△EDA,然后利用对应边成比例求出OC的长,再根据BE=AE﹣2OC计算即可.
试题解析:(1)证明:连接OC,
∵AC平分∠DAB,
∴∠DAC=∠CAB,
∵OC=OA,
∴∠OAC=∠OCA,
∴∠DAC=∠OCA,
∴OC∥AD,
∵AD⊥CD,
∴OC⊥CD,
∵OC为⊙O半径,
∴CD是⊙O的切线.
(2)解:在Rt△ADE中,由勾股定理得:AE==15,
∵OC∥AD,
∴△ECO∽△EDA,
∴
∴
解得:OC=,
∴BE=AE﹣2OC=15﹣2×=,
答:BE的长是.
科目:初中数学 来源: 题型:
【题目】如图,直线y=-x+分别与x轴、y轴交于B、C两点,点A在x轴上,∠ACB=90°,抛物线=ax2+bx+经过A、B两点.
(1)求A、B两点的坐标;
(2)求抛物线的解析式;
(3)点M是直线BC上方抛物线上的一点,过点M从作MH⊥BC于点H,作轴MD∥y轴交BC于点D,求DMH周长的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】菱形ABCD的边长为3,∠BAD=60°.
(1)连接AC,过点D作DE⊥AB于点E,DF⊥BC交AC于点F,DE、DF于点M、N.
①依题意补全图1;
②求MN的长;
(2)如图2,将(1)中∠EDF以点D为中心,顺时针旋转45°,其两边DE′、DF′分别与直线AB、BC相交于点Q、P,连接QP,请写出求△DPQ的面积的思路.(可以不写出计算结果)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,AC与BD相交于点O,AB=4,BD=4,E为AB的中点,点P为线段AC上的动点,则EP+BP的最小值为( )
A. 4B. 2C. 2D. 8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】大润发超市在销售某种进货价为20元/件的商品时,以30元/件售出,每天能售出100件.调查表明:这种商品的售价每上涨1元/件,其销售量就将减少2件.
(1)为了实现每天1600元的销售利润,超市应将这种商品的售价定为多少?
(2)设每件商品的售价为x元,超市所获利润为y元.
①求y与x之间的函数关系式;
②物价局规定该商品的售价不能超过40元/件,超市为了获得最大的利润,应将该商品售价定为多少?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图在ABCD中,点E为AB上一点,连接CE、DE,且CE⊥AB,CE=AB,点F为BC上一点,连接DF交CE于点G,∠CGD=∠B;
(1)若CG=2,AD=3,求GE的长;
(2)若CF=DE,求证:AD=CG+BE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知⊙O中,AB为弦,直线PO交⊙O于点M、N,PO⊥AB于C,过点B作直径BD,连接AD、BM、AP.
(1)求证:PM∥AD;
(2)若∠BAP=2∠M,求证:PA是⊙O的切线;
(3)若AD=6,tan∠M=,求⊙O的直径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角墙角AOB(OA⊥OB,且OA、OB长度不限)中,要砌20m长的墙,与直角墙角AOB围成地面为矩形的储仓,且地面矩形AOBC的面积为96m2.
(1)求地面矩形AOBC的长;
(2)有规格为0.80×0.80和1.00×1.00(单位:m)的地板砖单价分别为55元/块和80元/块,若只选其中一种地板砖都恰好能铺满储仓的矩形地面(不计缝隙),用哪一种规格的地板砖费用较少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司计划购买、两种型号的机器人搬运材料,已知型机器人比型机器人每小时多搬运材料,且型机器人搬运的材料所用的时间与型机器人搬运材料所用的时间相同.
(1)求、两种型号的机器人每小时分别搬运多少材料?
(2)该公司计划采购、两种型号的机器人共台,要求每小时搬运的材料不得少于,则至少购进型机器人多少台?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com