精英家教网 > 初中数学 > 题目详情

【题目】学之道在于悟.希望同学们在问题(1)解决过程中有所悟,再继续探索研究问题(2).
(1)如图①,∠B=∠C,BD=CE,AB=DC. ①求证:△ADE为等腰三角形.
②若∠B=60°,求证:△ADE为等边三角形.

(2)如图②,射线AM与BN,MA⊥AB,NB⊥AB,点P是AB上一点,在射线AM与BN上分别作点C、点 D 满足:△CPD为等腰直角三角形.(要求:利用直尺与圆规,不写作法,保留作图痕迹)

【答案】
(1)解:①证明:∵∠B=∠C,BD=CE,AB=DC,

∴△ABD≌DCE,

∴AB=DC,

∴△ADE为等腰三角形;

②∵△ABD≌△DCE,

∴∠BAD=∠CDE,

∵∠ADC是△ABD的外角,

∴∠ADC=∠B+∠BAD,

∵∠ADC=∠ADE+∠EDC,

又∵∠BAD=∠CDE.

∴∠ADE=∠B=60°,

∴等腰△ADE为等边三角形.


(2)解:有三种结果,如图所示:


【解析】(1)①先根据∠B=∠C,BD=CE,AB=DC,判定△ABD≌DCE,得出AB=DC,进而得到△ADE为等腰三角形;②根据△ABD≌△DCE,得出∠BAD=∠CDE,再根据∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠EDC,得到∠ADE=∠B=60°,最后判定等腰△ADE为等边三角形;(2)分三种情况讨论:∠CPD为直角顶点;∠PCD是直角顶点;∠PDC是直角顶点,分别进行画图即可.第一种情况:使得AP=BD,BP=AC;第二种情况:使得AC=AB,CE=AP,BD=AE;第三种情况:使得BD=AB,DF=BP,AC=BF.
【考点精析】根据题目的已知条件,利用等腰直角三角形和等腰三角形的判定的相关知识可以得到问题的答案,需要掌握等腰直角三角形是两条直角边相等的直角三角形;等腰直角三角形的两个底角相等且等于45°;如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边).这个判定定理常用于证明同一个三角形中的边相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】若A、B两点在数轴上所表示的数分别为a、b,则A、B两点间的距离可记为|a﹣b|:
(1)如图:若A、B两点在数轴上所表示的数分别为﹣2、4,求A、B两点的距离为

(2)若A,B两点分别以每秒3个单位长度和每秒1个单位长度的速度同时沿数轴正方向运动,设运动时间为t秒,解答下列问题:
①运动t秒后,A点所表示的数为 , B点所表示的数为;(答案均用含t的代数式表示)
②当t为何值时,A、B两点的距离为4?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在△ABC中,AB=AC,以AC为直径的⊙O与BC交于点D,DE⊥AB,垂足为E,ED的延长线与AC的延长线交于点F。

(1)求证:DE是⊙O的切线;

(2)若⊙O的半径为4,BE=2,求∠F的度数。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料:

根据联合国《人口老龄化及其社会经济后果》中提到的标准,当一个国家或地区65岁及以上老年人口数量占总人口比例超过7%时,意味着这个国家或地区进入老龄化。从经济角度,一般可用“老年人口抚养比”来反映人口老龄化社会的后果。所谓“老年人口抚养比”是指某范围人口中,老年人口数(65岁及以上人口数)与劳动年龄人口数(15-64岁人口数)之比,通常用百分比表示,用以表明每100名劳动年龄人口要负担多少名老年人。

以下是根据我国近几年的人口相关数据制作的统计图和统计表。

2011-2014年全国人口年龄分布图

2011-2014年全国人口年龄分布表

2011年

2012年

2013年

2014年

0-14岁人口占总人口的百分比

16.4%

16.5%

16.4%

16.5%

15-64岁人口占总人口的百分比

74.5%

74.1%

73.9%

73.5%

65岁及以上人口占总人口的百分比

m

9.4%

9.7%

10.0%

*以上图表中数据均为年末的数据。

根据以上材料解答下列问题:

(1)2011年末,我国总人口约为_______亿,全国人口年龄分布表中m的值为_______;

(2)若按目前我国的人口自然增长率推测,到2027年末我国约有14.60亿人。假设0-14岁人口占总人口的百分比一直稳定在16.5%,15-64岁的人口一直稳定在10亿,那么2027年末我国0-14岁人口约为_______亿,“老年人口抚养比”约为_______; (精确到1%)

(3)2016年1月1日起我国开始施行“全面二孩”政策,一对夫妻可生育两个孩子。在未来10年内,假设出生率显著提高,这_______(填“会”或“不会”)对我国的“老年人口抚养比”产生影响。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列各式中,不含因式a+1的是(  )

A.a2﹣1
B.2a2+4a+2
C.a2+a﹣2
D.a2﹣2a﹣3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,AE平分∠BAD,DE平分∠ADC.
(1)如果∠B+∠C=120°,则∠AED的度数= . (直接写出结果)
(2)根据(1)的结论,猜想∠B+∠C与∠AED之间的关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ACB=90°,BC=6cm,AC=8cm,点O为AB的中点,连接CO.点M在CA边上,从点C以1cm/秒的速度沿CA向点A运动,设运动时间为t秒.
(1)当∠AMO=∠AOM时,求t的值;
(2)当△COM是等腰三角形时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一次智力测验,有20道选择题.评分标准是:对1题给5分,错1题扣2分,不答题不给分也不扣分.小明有两道题未答.至少答对几道题,总分才不会低于60分.则小明至少答对的题数是( )

A.11 B。12 C.13 D.14

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,把一张长方形的纸片ABCD沿对角线BD折叠,点C落在E处,BE交AD于点F.
(1)求证:FB=FD;
(2)如图2,连接AE,求证:AE∥BD;
(3)如图3,延长BA,DE相交于点G,连接GF并延长交BD于点H,求证:GH垂直平分BD.

查看答案和解析>>

同步练习册答案