如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴为直线x=1,若其与x轴一交点为A(3,0),则由图象可知,不等式ax2+bx+c<0的解集是 .
![]()
科目:初中数学 来源: 题型:
二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是( )
![]()
A. 函数有最小值 B. 对称轴是直线x=
C. 当x<
,y随x的增大而减小 D. 当﹣1<x<2时,y>0
查看答案和解析>>
科目:初中数学 来源: 题型:
如图是二次函数y=ax2+bx+c的图象的一部分,对称轴是直线x=1.
①b2>4ac;
②4a﹣2b+c<0;
③不等式ax2+bx+c>0的解集是x≥3.5;
④若(﹣2,y1),(5,y2)是抛物线上的两点,则y1<y2.
上述4个判断中,正确的是( )
![]()
A. ①② B.①④ C.①③④ D. ②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是( )
A. y=x2﹣1 B.y=x2+1 C.y=(x﹣1)2 D. y=(x+1)2
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,抛物线y=﹣x2+2x+c与x轴交于A,B两点,它的对称轴与x轴交于点N,过顶点M作ME⊥y轴于点E,连结BE交MN于点F,已知点A的坐标为(﹣1,0).
(1)求该抛物线的解析式及顶点M的坐标.
(2)求△EMF与△BNF的面积之比.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一条长为2014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A…的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是( )
![]()
A. (﹣1,0) B.(1,﹣2) C.(1,1) D. (﹣1,﹣1)
查看答案和解析>>
科目:初中数学 来源: 题型:
请在所给网格中按下列要求操作:
(1)请在网格中建立平面直角坐标系,使A点坐标为(0,2),B点坐标为(﹣2,0);
(2)在x轴上画点C,使△ABC为等腰三角形,请画出所有符合条件的点C,并直接写出相应的C点坐标.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com