【题目】已知抛物线y=x2+(2m+1)x+m(m﹣3),(m为常数,﹣1≤m≤4),A(﹣m﹣1,y1),是该抛物线上不同的两点,现将抛物线的对称轴绕坐标原点O逆时针旋转90°得到直线a,过抛物线顶点P作PH⊥a于H.
(1)当m=1时,求出这条抛物线的顶点坐标;
(2)若无论m取何值,抛物线与直线y=x﹣km(k为常数)有且仅有一个公共点,求k的值;
(3)当1<PH≤6时,试比较y1,y2之间的大小.
【答案】(1)(﹣,﹣);(2)k=3;(3)﹣1≤m<﹣或<m≤时,有y2>y1,﹣<m<﹣时,有y2<y1
【解析】
(1)化成顶点式即可求得顶点坐标;(2)列方程组根据△=0解决问题;(3)首先证明y1=y3,再根据点B的位置,分类讨论,①令 <-m-1,求出m的范围即可判断,②令=-m-1,则A与B重合,此情形不合题意,舍弃.③令>-m-1,求出m的范围即可判断,④令 ≤<-m,求出m的范围即可判断,⑤令=-m,B,C重合,不合题意舍弃.⑥令>-m,求出m的范围即可判断.
解:(1)∵m=1,
∴y=x2+3x﹣2=(x+)2﹣,
∴顶点坐标(﹣,﹣).
(2)由 消去y得x2+2mx+(m2+km﹣3m)=0,
∵抛物线与直线y=x﹣km有且仅有一个公共点,
∴△=0,即(k﹣3)m=0,
∵无论m取何值,方程总是成立,
∴k﹣3=0,
∴k=3.
(3)∵,
抛物线y=x2+(2m+1)x+m(m﹣3)的顶点为,
PH=|﹣ ﹣(﹣ )|=| |,
∵1<PH≤6,
∴当>0时,有1<≤6,又﹣1≤m≤4,
∴ <m≤ ,
当<0时,1<﹣≤6,又∵﹣1≤m≤4,
∴﹣1≤m<﹣,
∴﹣1≤m<﹣或<m≤,
∵A(﹣m﹣1,y1)在抛物线上,
∴y1=(﹣m﹣1)2+(2m+1)(﹣m﹣1)+m(m+3)=﹣4m,
∵C(﹣m,y3)在抛物线上,
∴y3=(﹣m)2+(2m+1)(﹣m)+m(m﹣3)=﹣4m,
∴y1=y3,
①令<﹣m﹣1,则有m<﹣ ,结合﹣1≤m<﹣,
∴﹣1≤m<﹣,
此时,在对称轴的左侧y随x的增大而减小,如图1,
∴y2>y1=y3,
即当﹣1≤m<﹣时,有y2>y1=y3.
②令=﹣m﹣1,则A与B重合,此情形不合题意,舍弃.
③令>﹣m﹣1,且时,有﹣<m≤﹣ ,结合﹣1≤m<﹣,
∴﹣<m≤﹣,
此时,在对称轴的左侧,y随x的增大而减小,如图2,
∴y1=y3>y2,
即当﹣<m≤﹣时,有y1=y3>y2,
④令,有﹣≤m<0,结合﹣1≤m<﹣,
∴﹣≤m<﹣,
此时,在对称轴的右侧y随x的增大而增大,如图3,
∴y2<y3=y1.
⑤令,B,C重合,不合题意舍弃.
⑥令,有m>0,结合<m≤,
∴<m≤,
此时,在对称轴的右侧,y随x的增大而增大,如图4,
∴y2>y3=y1,
即当<m≤时,有y2>y3=y1,
综上所述,﹣1≤m<﹣或<m≤时,有y2>y1=y3,﹣<m<﹣时,有y2<y1=y3.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中的两个图形M与N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“和睦距离”,记作d(M,N).若图形M,N有公共点,则d(M,N)=0.
(1)如图,A(0,1),C(3,4),⊙C的半径为2,则d(C,⊙C)= ,d(O,⊙C)= ;
(2)已知,如图,△ABC的一边AC在x轴上,B在y轴上,且AC=8,AB=7,BC=5.
①D是△ABC内一点,若AC、BC分别切⊙D于E、F,且d(C,D)=2d(D,AB),判断AB与⊙D的位置关系,并求出D点的坐标;
②若以r为半径,①中的D为圆心的⊙D,有d(B,⊙D)>1,d(C,⊙D)<2,直接写出r的取值范围 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知线段 AC=4,线段BC绕点C旋转,且BC=6,连结AB,以AB为边作正方形ADEB,连结CD.
(1)若∠ACB=90°,则AB的值是____;
(2)线段CD长的最大值是____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(问题提出)如果从,个连续的自然数中选择个连续的自然数,有多少种不同的选择方法?
(问题探究)为发现规律,我们采用一般问题特殊化的策略,先从最简单的问题入手,再逐次递进,最后得出一般性的结论.
探究一:如果从,个连续的自然数中选择个连续的自然数,会有多少种不同的选择方法?
当,时,显然有种不同的选择方法;
当,时,有,;,;,这种不同的选择方法;
当,时,有________种不同的选择方法;
……
由上可知:从个连续的自然数中选择个连续的自然数,有_______种不同的选择方法.
探究二:如果从,个连续的自然数中选择个,个……个连续的自然数,分别有多少种不同的选择方法?
我们借助下面的框图继续探究,发现规律并应用规律完成填空.
... |
从个连续的自然数中选择个连续的自然数,有_______种不同的选择方法;
从个连续的自然数中选择个连续的自然数,有_______种不同的选择方法;
……
从个连续的自然数中选择个连续的自然数,有_______种不同的选择方法;
……
由上可知:如果从,个连续的自然数中选择个连续的自然数,有______种不同的选择方法.
(问题解决)如果从,个连续的自然数中选择个连续的自然数,有_______种不同的选择方法.
(实际应用)我们运用上面探究得到的结论,可以解决生活中的一些实际问题.
(1)今年国庆七天长假期间,小亮想参加某旅行社组织的青岛两日游,在出行日期上,他共有______种不同的选择.
(2)星期天,小明、小强和小华三个好朋友去电影院观看《我和我的祖国》,售票员李阿姨为他们提供了第七排号到号的电影票让他们选择,如果他们想拿三张连号票,则一共有______种不同的选择方法.
(拓展延伸)如图,将一个的图案放置在的方格纸中,使它恰好盖住其中的四个小正方形,共有______种不同的放置方法.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一次函数y1=kx+m(k≠0)和二次函数y2=ax2+bx+c(a≠0)的自变最x和对应函数值y1,y2的部分对应值如表:
x | … | ﹣1 | 0 | 2 | 4 | … |
y1 | … | 0 | 1 | 3 | 5 | … |
x | … | ﹣1 | 1 | 3 | 4 | … |
y2 | … | 0 | ﹣4 | 0 | 5 | … |
当y1≥y2时,自变量x的取值范图是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一项答题竞猜活动,在6个式样、大小都相同的箱子中有且只有一个箱子里藏有礼物.参与选手将回答5道题目,每答对一道题,主持人就从6个箱子中去掉一个空箱子.而选手一旦答错,即取消后面的答题资格,从剩下的箱子中选取一个箱子.
(1)一个选手答对了4道题,求他选中藏有礼物的箱子的概率;
(2)已知一个选手选中藏有礼物的箱子的概率为,则他答对了几道题?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,若直线l︰y=-2x+4交x轴于点A、交y轴于点B,将△AOB绕点O逆时针旋转得到△COD.过点A,B,D的抛物线h︰y=ax2+bx+4.
(1)求抛物线h的表达式;
(2)若与y轴平行的直线m以1秒钟一个单位长的速度从y轴向左平移,交线段CD于点M、交抛物线h于点N,求线段MN的最大值;
(3)如图②,点E为抛物线h的顶点,点P是抛物线h在第二象限的上一动点(不与点D、B重合),连接PE,以PE为边作图示一侧的正方形PEFG.随着点P的运动,正方形的大小、位置也随之改变,当顶点F或G恰好落在y轴上时,直接写出对应的点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在中,,,,于点D,将绕点B顺时针旋转得到
如图2,当时,求点C、E之间的距离;
在旋转过程中,当点A、E、F三点共线时,求AF的长;
连结AF,记AF的中点为P,请直接写出线段CP长度的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为纪念建国70周年,某校举行班级歌咏比赛,歌曲有:《我爱你,中国》,《歌唱祖国》,《我和我的祖国》(分别用字母A,B,C依次表示这三首歌曲).比赛时,将A,B,C这三个字母分别写在3张无差别不透明的卡片正面上,洗匀后正面向下放在桌面上,八(1)班班长先从中随机抽取一张卡片,放回后洗匀,再由八(2)班班长从中随机抽取一张卡片,进行歌咏比赛.
(1)八(1)班抽中歌曲《我和我的祖国》的概率是__________;
(2)试用画树状图或列表的方法表示所有可能的结果,并求出八(1)班和八(2)班抽中不同歌曲的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com