【题目】如图,以O为圆心的两个同心圆,大圆半径为5,小圆半径为,点P为大圆上的一点,PC、PB切小圆于点A、点B,交大圆于C、D两点,点E为弦CD上任一点,则AE+OE的最小值为 .
【答案】
【解析】
试题分析:连接PO,并延长OP到O′交CD于点G,使OG=O′G,连接AO′交CD于点E,连接OE,过点A作AF⊥OP,垂足为F,由切线的性质可知OB⊥PD,由垂径定理可知PB=BD,在Rt△OPB中,由勾股定理可知PB=2,故此PD=4,同理可知PC=4,从而得到PC=PD,然后证明PO平分∠CPD,由等腰三角形三线合一的性质可知PG⊥DC,依据锐角三角函数的定义可知OF=1,AF=2,PG=8,从而求得OO′=7,在Rt△AFO′中,由勾股定理可知AO′=.
解:如图所示:连接PO,并延长OP到O′交CD于点G,使OG=O′G,连接AO′交CD于点E,连接OE,过点A作AF⊥OP,垂足为F.
∵PB是小圆的切线,
∴OB⊥PD.
∴PB=BD.
在Rt△OPB中,PB===2.
∴PD=4.
同理:PC=4.
∴PC=PD.
∵PA、PB是小圆的切线,
∴PO平分∠CPD.
∴PG⊥DC.
∴CD是OO′的垂直平分线.
∴OE=O′E.
∴AE+EO=AE+EO′=AO′.
∵cos∠AOF==,
∴OF=AO×cos∠AOF==1,AF=2OF=2.
∵PG=PC×==8,
∴OG=PG﹣OP=3.
∴OO′=1+3+3=7.
在Rt△AFO′中,AO′===.
故答案为:.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ABC=90°,BE⊥AC于点E,点D在AC上,且AD=AB,AK平分∠CAB,交线段BE于点F,交边CB于点K.
(1)在图中找出一对全等三角形,并证明;
(2)求证:FD∥BC .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC内接于⊙O,BC为直径,AB=8,AC=6,D是弧AB的中点,CD与AB的交点为E,则等于( )
A.4.8
B.3.5
C.3
D.2.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算
(1)﹣1﹣(﹣10)÷ +(﹣4)
(2)1+(﹣2)+|﹣2﹣3|﹣5
(3)(﹣1)10×2+(﹣2)3÷4
(4)(3a﹣2)﹣3(a﹣5)
(5)﹣4xy+3( xy﹣2x)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在国家政策的宏观调控下,某市的商品房成交均价由去年10月份的7000元/m2下降到12月份的5670元/m2 , 则11、12两月平均每月降价的百分率是%。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程:x2﹣(m﹣3)x﹣m=0.
(1)试判断原方程根的情况;
(2)若抛物线y=x2﹣(m﹣3)x﹣m与x轴交于A(x1,0),B(x2,0)两点,则A,B两点间的距离是否存在最大或最小值?若存在,求出这个值;若不存在,请说明理由.
(友情提示:AB=|x2﹣x1|)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com