【题目】为缓解油价上涨给出租车待业带来的成本压力,某巿自2018年11月17日起,调整出租车运价,调整方案见下列表格及图象(其中a,b,c为常数)
行驶路程 | 收费标准 | |
调价前 | 调价后 | |
不超过3km的部分 | 起步价6元 | 起步价a 元 |
超过3km不超出6km的部分 | 每公里2.1元 | 每公里b元 |
超出6km的部分 | 每公里c元 |
设行驶路程xkm时,调价前的运价y1(元),调价后的运价为y2(元)如图,折线ABCD表示y2与x之间的函数关系式,线段EF表示当0≤x≤3时,y1与x的函数关系式,根据图表信息,完成下列各题:
(1)填空:a= ,b= ,c= .
(2)写出当x>3时,y1与x的关系,并在上图中画出该函数的图象.
(3)函数y1与y2的图象是否存在交点?若存在,求出交点的坐标,并说明该点的实际意义,若不存在请说明理由.
【答案】(1)7,1.4,2.1;(2)y1=2.1x﹣0.3;图象见解析;(3)函数y1与y2的图象存在交点(,9);其意义为当 x<时是方案调价前合算,当x>时方案调价后合算.
【解析】(1)a由图可直接得出;b、c根据:运价÷路程=单价,代入数值,求出即可;
(2)当x>3时,y1与x的关系,由两部分组成,第一部分为起步价6,第二部分为(x﹣3)×2.1,所以,两部分相加,就可得到函数式,并可画出图象;
(3)当y1=y2时,交点存在,求出x的值,再代入其中一个式子中,就能得到y值;y值的意义就是指运价.
①由图可知,a=7元,
b=(11.2﹣7)÷(6﹣3)=1.4元,
c=(13.3﹣11.2)÷(7﹣6)=2.1元,
故答案为7,1.4,2.1;
②由图得,当x>3时,y1与x的关系式是:
y1=6+(x﹣3)×2.1,
整理得,y1=2.1x﹣0.3,
函数图象如图所示:
③由图得,当3<x<6时,y2与x的关系式是:
y2=7+(x﹣3)×1.4,
整理得,y2=1.4x+2.8;
所以,当y1=y2时,交点存在,
即,2.1x﹣0.3=1.4x+2.8,
解得,x=,y=9;
所以,函数y1与y2的图象存在交点(,9);
其意义为当 x<时是方案调价前合算,当 x>时方案调价后合算.
科目:初中数学 来源: 题型:
【题目】我市盘山、黄崖关长城、航母公园三景区是人们节假日游玩的热点景区.某中学对七年级(1)班学生今年暑假到这三景区游玩的计划做了全面调查,调查分四个类别,A游三个景区;B:游两个景区;C:游一个景区;D:不到这三个景区游玩.根据调查的结果绘制了不完全的条形统计图和扇形统计图(如图①、图②)如下,请根据图中所给的信息,解答下列问题:
(1)求七年级(1)班学生人数;
(2)将条形统计图补充完整;
(3)求扇形统计图中表示“B类别”的圆心角的度数;
(4)若该中学七年级有学生520人,求计划暑假选择A、B、C三个类别出去游玩的学生有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知是最大的负整数,是多项式的次数,是单项式的系数,且、、分别是点、、在数轴上对应的数.
(1)求、、的值;
(2)若动点、同时从、出发沿数轴负方向运动,点的速度是每秒个单位长度,点的速度是每秒2个单位长度,在数轴上-10处竖立一块档板,运动点碰到档板后马上沿反方向返回,当运动到档板时两点向时停止运动,求当运动几秒后,点碰到点?并求此位置在数轴上表示的数;
(3)在数轴上找一点,使点到、、三点的距离之和等于13,请直接写出所有点对应的数.(不必说明理由)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,BC>AB,E是AD上一点,△ABE沿BE折叠,点A恰好落在线段CE上的点F处.
(1)求证:CF=DE;
(2)设=m.
①若m=,试求∠ABE的度数;
②设=k,试求m与k满足的关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0)
(1)画出△ABC关于x轴对称的△A1B1C1;
(2)画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2;
(3)△A1B1C1与△A2B2C2成轴对称图形吗?若成轴对称图形,画出所有的对称轴;
(4)△A1B1C1与△A2B2C2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30°
操作:将三角板DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三角板DEF绕点E旋转,并使边DE与边AB交于点P,边EF与边BC于点Q.
探究一:在旋转过程中,
(1)如图2,当时,EP与EQ满足怎样的数量关系?并给出证明;
(2)如图3,当时,EP与EQ满足怎样的数量关系?并说明理由;
(3)根据你对(1)、(2)的探究结果,试写出当时,EP与EQ满足的数量关系式为 ,其中m的取值范围是 .(直接写出结论,不必证明)
探究二:若且AC=30cm,连接PQ,设△EPQ的面积为S(cm2),在旋转过程中:
(1)S是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,说明理由.
(2)随着S取不同的值,对应△EPQ的个数有哪些变化,求出相应S的值或取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】今年“国庆”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为(分钟),所走的路程为(米),与之间的函数关系如图所示.下列说法错误的是( )
A.小明中途休息用了20分钟
B.小明休息前路程与时间的函数关系式
C.小明在上述过程中所走的路程为6600米
D.小明休息前爬山的平均速度大于休息后爬山的平均速度
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF.
(1)求证:ABCD是菱形;
(2)若AB=5,AC=6,求ABCD的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com