精英家教网 > 初中数学 > 题目详情

【题目】下列结论:①若,则关于x的方程 ax-b+c=0(a的解是x=-1;②若x=1是方程ax+b+c=1a的解,则a+b+c=1成立;③若,则;④ABC是平面内的三个点,ABAC是两条线段,若AB=AC,则点C为线段AB的中点;⑤若,则的值为0。其中正确结论的个数是(

A.2B.3C.4D.5

【答案】C

【解析】

①求出b=2ac=3a,然后代入方程求解即可;②根据方程解的定义代入即可;③根据题意可得a=b,且ab≠0,然后代入计算即可;④根据线段中点的定义判断即可;⑤首先求出zy0xz0yx0,然后利用绝对值的性质化简.

解:①∵

b=2ac=3a

∴关于x的方程 ax-b+c=0可变形为:ax-2a+3a=0(a≠0)

解得:x=1,故①正确;

②将x=1代入ax+b+c=1得:a+b+c=1,故②正确;

③∵

a=b,且ab≠0

,故③正确;

④若ABC在同一条直线上,则点A为线段BC的中点,故④错误;

⑤∵

zy0xz0yx0

,故⑤正确,

故选:C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以直线AB上一点O为端点作射线OC,使∠AOC65°,将一个直角三角形的直角顶点放在点O处.(注:∠DOE90°)

1)如图,若直角三角板DOE的一边OD放在射线OA上,则∠COE   

2)如图,将直角三角板DOE绕点O顺时针方向转动到某个位置,若OC恰好平分∠AOE,求∠COD的度数;

3)如图,将直角三角板DOE绕点O任意转动,如果OD始终在∠AOC的内部,试猜想∠AOD和∠COE有怎样的数量关系?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x(x为正整数),每月的销量为y箱.

1)写出yx中间的函数关系式和自变量的取值范围;

2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,直线与双曲线交于两点,与轴交于点,与轴交于点,已知点、点

1)求直线和双曲线的解析式;

2)将沿直线翻折,点落在第一象限内的点处,直接写出点的坐标;

3)如图2,过点作直线轴的负半轴于点,连接轴于点,且的面积与的面积相等.

①求直线的解析式;

②在直线上是否存在点,使得?若存在,请直接写出所有符合条件的点的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,直线ABx轴交于点A,与y轴交于点B,且OA=3,AB=5.点P从点O出发沿OA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AO返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB﹣BO﹣OP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t0).

(1)求直线AB的解析式;

(2)在点POA运动的过程中,求△APQ的面积St之间的函数关系式(不必写出t的取值范围);

(3)在点EBO运动的过程中,完成下面问题:

①四边形QBED能否成为直角梯形?若能,请求出t的值;若不能,请说明理由;

②当DE经过点O时,请你直接写出t的值.

【答案】(1)直线AB的解析式为;(2)S=﹣t2+t;

(3)四边形QBED能成为直角梯形.①t=②当DE经过点O时,t=

【解析】分析:(1)首先由在RtAOB,OA=3,AB=5,求得OB的值,然后利用待定系数法即可求得一次函数的解析式;
(2)过点QQFAO于点F.由△AQF∽△ABO,根据相似三角形的对应边成比例,借助于方程即可求得QF的长,然后即可求得的面积St之间的函数关系式;
(3)①分别从DEQBPQBO去分析,借助于相似三角形的性质,即可求得t的值;
②根据题意可知即时,则列方程即可求得t的值.

详解:(1)RtAOB,OA=3,AB=5,由勾股定理得

A(3,0),B(0,4).

设直线AB的解析式为y=kx+b.

.解得

∴直线AB的解析式为

(2)如图1,过点QQFAO于点F.

AQ=OP=tAP=3t.

由△AQF∽△ABO,

(3)四边形QBED能成为直角梯形,

①如图2,DEQB时,

DEPQ

PQQB,四边形QBED是直角梯形.

此时

由△APQ∽△ABO,

解得

如图3,PQBO时,

DEPQ

DEBO,四边形QBED是直角梯形.

此时

由△AQP∽△ABO,

3t=5(3t),

3t=155t

8t=15,

解得

(PA0运动的过程中还有两个,但不合题意舍去).

②当DE经过点O时,

DE垂直平分PQ

EP=EQ=t

由于PQ相同的时间和速度,

AQ=EQ=EP=t

∴∠AEQ=EAQ

∴∠BEQ=EBQ

BQ=EQ

所以

PAO运动时,

过点QQFOBF

EP=6t,

EQ=EP=6t

AQ=tBQ=5t

解得:

∴当DE经过点O, .

点睛:本题考查知识点较多,勾股定理,待定系数法求一次函数解析式,相似三角形的判定与性质等知识点,熟练掌握和运用各个知识点是解题的关键.

型】解答
束】
21

【题目】如图,反比例函数y(m0)与一次函数y=kx+b(k0)的图象相交于A、B两点,点A的坐标为(-6,2),点B的坐标为(3,n).求反比例函数和一次函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:

售价x(元/千克)

50

60

70

销售量y(千克)

100

80

60

(1)求y与x之间的函数表达式;

(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本),并指出售价为多少元时获得最大利润,最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)阅读理解:如图①,在四边形ABCD中,AB∥DC,E是BC的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.

解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC,得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.

AB、AD、DC之间的等量关系为   

(2)问题探究:如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.

(3)问题解决:如图③,AB∥CF,AE与BC交于点E,BE:EC=2:3,点D在线段AE上,且∠EDF=∠BAE,试判断AB、DF、CF之间的数量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,E为 BC上的点,F为 CD边上的点,且AE=AF,AB=4,设EC=x,△AEF 的面积为y,则yx之间的函数关系式是____.

查看答案和解析>>

同步练习册答案