精英家教网 > 初中数学 > 题目详情

已知二次函数y=x2+(m+3)x+m+2,当-1<x<3时,恒有y<0;关于x的方程x2+(m+3)x+m+2=0的两个实数根的倒数和小于数学公式.求m的取值范围.

解:①由题意可得,方程x2+(m+3)x+m+2=0与x轴有两个交点,
故有△>0,即(m+3)2-4(m+2)>0,
解得:m≠-1,
又y=x2+(m+3)x+m+2=(x+1)(x+m+2),
当y<0时,x可取两个范围:-1<x<-m-2或-m-2<x<-1,
而由题意得,当-1<x<3时,恒有y<0,
故可得,当y<0时,x的取值范围为:-1<x<-m-2,
也可得出-m-2>3,
解得:m<-5;
②由题意得,方程x2+(m+3)x+m+2=0有实数根,
故有△≥0,即(m+3)2-4(m+2)≥0,
解得:m可取任意实数,
+==<-
解得:m<-12,
综合①②可得:m<-12.
分析:①y=x2+(m+3)x+m+2=(x+1)(x+m+2),再由当-1<x<3时,恒有y<0,可得出m的范围;
②利用根与系数的关系,得出x1+x2及x1x2的值,根据<-,也可得出m的取值范围,两个范围结合可得出答案.
点评:此题考查了二次函数的综合应用,解答本题的关键是掌握二次函数与x轴交点与一元二次方程解的联系,要求熟练掌握根与系数的关系,有一定难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、已知二次函数y=x2+mx+m-5,
(1)求证:不论m取何值时,抛物线总与x轴有两个交点;
(2)求当m取何值时,抛物线与x轴两交点之间的距离最短.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=x2+(2a+1)x+a2-1的最小值为0,则a的值是(  )
A、
3
4
B、-
3
4
C、
5
4
D、-
5
4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知二次函数y=-x2+2x+m的部分图象如图所示,则关于x的一元二次方程-x2+2x+m=0的解为(  )
A、x1=1,x2=3B、x1=0,x2=3C、x1=-1,x2=1D、x1=-1,x2=3

查看答案和解析>>

科目:初中数学 来源: 题型:

8、已知二次函数y1=x2-x-2和一次函数y2=x+1的两个交点分别为A(-1,0),B(3,4),当y1>y2时,自变量x的取值范围是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=-x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(-1,0),与y轴的交点坐标为(0,3).
(1)试求二次函数的解析式;
(2)求y的最大值;
(3)写出当y>0时,x的取值范围.

查看答案和解析>>

同步练习册答案