精英家教网 > 初中数学 > 题目详情

【题目】如图,在直角坐标平面xOy中,点A坐标为ABx轴交于点C,那么ACBC的值为______

【答案】

【解析】

过点A作AD⊥y轴,垂足为D,作BE⊥y轴,垂足为E.先证△ADO∽△OEB再根据∠OAB30°求出三角形的相似比,得到OD:OE=2,根据平行线分线段成比例得到AC:BC=OD:OE=2=

解:

如图所示:过点AADy轴,垂足为D,作BEy轴,垂足为E.

∵∠OAB30°,∠ADE90°,∠DEB90°

DOA+BOE=90°,∠OBE+BOE=90°

DOA=OBE

∴△ADO∽△OEB

∵∠OAB30°,∠AOB90°

OAOB=

∵点A坐标为(32

AD=3OD=2

∵△ADO∽△OEB

OE

OCADBE

根据平行线分线段成比例得:

AC:BC=OD:OE=2=

故答案为.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与轴的一个交点坐标为(1,0),其部分图象如图所示,下列结论:

4ac<b2 方程ax2+bx+c=0的两个根是 3a+c>0 y>0时,x的取值范围是-1≤x<3 x<0时,yx增大而增大;

其中结论正确有__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】等腰△ABC内接于半径为5O,点O到底边BC的距离为3,则AB的长为___

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线p: 的顶点为C,与x轴相交于A、B两点(点A在点B左侧),点C关于x轴的对称点为C′,我们称以A为顶点且过点C′,对称轴与y轴平行的抛物线为抛物线p的“梦之星”抛物线,直线AC′为抛物线p的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是和y=2x+2,则这条抛物线的解析式为____________________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,二次函数的图象与x轴交于A、B两点,B点的坐标为(3,0),与y轴交于点C(0,-3),点P是直线BC下方抛物线上的一个动点.

(1)求二次函数解析式;

(2)连接PO,PC,并将POC沿y轴对折,得到四边形.是否存在点P,使四边形为菱形?若存在,求出此时点P的坐标;若不存在,请说明理由;

(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC中,∠ACB90°D是边AB的中点,P是边AC上一动点,BPCD相交于点E

1)如果BC6AC8,且PAC的中点,求线段BE的长;

2)联结PD,如果PDAB,且CE2ED3,求cosA的值;

3)联结PD,如果BP22CD2,且CE2ED3,求线段PD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,在上分别找点,使,将绕点顺时针方向旋转,的中点恰好落在的中点,延长,连接.

1)四边形是什么特殊四边形?说明理由.

2)是否存在中,使得图中四边形为菱形?若不存在,说明理由;若存在,求出此时的面积与面积的倍数关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy(如图)中,抛物线yax2+bx+2经过点A40)、B22),与y轴的交点为C

1)试求这个抛物线的表达式;

2)如果这个抛物线的顶点为M,求AMC的面积;

3)如果这个抛物线的对称轴与直线BC交于点D,点E在线段AB上,且∠DOE45°,求点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现有一面12米长的墙,某农户计划用28米长的篱笆靠墙围成一个矩形养鸡场ABCD(篱笆只围ABBCCD三边),其示意图如图所示.

(1)若矩形养鸡场的面积为92平方米,求所用的墙长AD.(结果精确到0.1米)(参考数据=1.41,=1.73,=2.24)

(2)求此矩形养鸡场的最大面积.

查看答案和解析>>

同步练习册答案